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1. Introduction

1.1. Iwasawa’s theorem on growth of class groups. The first goal of this project is formalize the
proof of Iwasawa’s theorem on growth of class groups in a Zp-extension tower in L EAN.

Definition 1.1. Let K be a field, p be a prime.
(i) An extension K∞/K is called a Zp-extension, if it is Galois with Γ = Gal(K∞/K) ∼= Zp as

topological groups.
(ii) If K∞/K is a Zp-extension, then for any n ≥ 0, define Kn := KΓpn

∞ .

Theorem 1.2 (Iwasawa’s theorem). Let K be a number field, p be a prime, K∞/K be a Zp-extension.
Then there exist integers λ, µ, ν such that for all sufficiently large n, ordp(#Cl(Kn)) = µpn + λn+ ν.

Proof. This comes from Theorem 5.6, Proposition 4.16, and Proposition 5.7. □

2. Preliminaries in commutative algebra

2.1. Random.

Proposition 2.1. Let A be a Noetherian ring and M be a finitely generated A-module. Then there exists
a chain of submodules of M

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M
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such that for each 1 ≤ i ≤ n, Mi/Mi−1
∼= A/pi for some prime ideal pi ∈ Spec(A).

Proof. When M = 0 we take n = 0 and there is nothing to prove. When M 6= 0 we have Ass(M) 6= ∅
and we can take p1 be any element in Ass(M) and we obtain M1 := A/p1 ↪→ M . If M1 6= M , do
the same for M/M1 to get M2/M1

∼= A/p2 ↪→ M/M1. Since M is a Noetherian A-module, the chain
M1 ⊂M2 ⊂ · · · must stop after a finite number of steps. □
Theorem 2.2 (Krull’s Hauptidealsatz). Let A be a Noetherian ring. If a = (a1, · · · , an) is an ideal of
A generated by n elements, and p is a minimal prime over-ideal of a, then ht(p) ≤ n.

Conversely, if p is a prime ideal of A of height ≤ n, then there exists an ideal a of A generated by n
elements, such that p is a minimal prime in A/a.

(This is WIP in #23778.)
Proof. If p is a minimal prime over-ideal of a, then aAp ⊂ pAp, and p(Ap/aAp), which is the only
maximal ideal of Ap/aAp, is also a minimal prime ideal. Therefore Ap/aAp is Artinian, and so aAp is
an open ideal. It follows that ht(p) = dim(Ap) ≤ n.

Conversely, if p is a prime ideal of height ≤ n, then dim(Ap) ≤ n, so there exists an ideal of definition
IAp of Ap (i.e. an open ideal with respect to pAp-adic topology), generated by n elements. Clearing
their denominators we may assume that the generators take the form x1

s , · · · , xn

s for some x1, · · · , xn ∈ I

and s ∈ A \ p. Since pNAp ⊂ IAp ⊂ pAp for some integer N ≥ 1, we obtain pN ⊂ I ⊂ p, and
IAp = (x1, · · · , xn)Ap (hence we may replace I by (x1, · · · , xn)), and that p is a minimal prime over-
ideal of I (since if I ⊂ p′ ⊂ p for some prime ideal p′, then pN ⊂ p′, hence p ⊂ p′, so p = p′). □
Theorem 2.3. Let A be a Noetherian domain. Then A is a UFD if and only if every prime ideal of
height 1 is principal (recall that a prime ideal p is of height 1 if p 6= 0 and there is no prime ideal lies in
between 0 and p).

(We only need “⇒” in our project.)
Proof. “⇒”: Let p be a prime ideal of height 1, and let a ∈ p be a non-zero element. Factor a into a
product of irreducible elements (= prime elements) a = p1 · · · pr. Then by a ∈ p we obtain pi ∈ p for
some i, since (pi) 6= 0 is a prime ideal contained in p, we have p = (pi).

“⇐”: It suffices to show that every irreducible element is prime. Let p ∈ A be irreducible, and p be a
prime ideal of A minimal containing p. Then p is of height 1 by Krull’s Hauptidealsatz (Theorem 2.2),
so p = (π) is principal. Since p ∈ p = (π), π | p, and since p is irreducible, p = uπ for some unit u,
therefore p is prime (which generates p). □
Theorem 2.4. A regular local ring is a UFD.
Lemma 2.5 (Nakayama lemma, pro-p version). Suppose Λ ∼= Zp[[T ]], X is a pro-p Λ-module, x1, · · · , xt ∈
X such that their images in X/TX generate X/TX as a Λ/(T )-module. Then x1, · · · , xt generate X
as a Λ-module.

Similar result holds when T is replaced by a topologically nilpotent element. Also for several variable
formal power series.

Proof. Let Y := Λx1 + · · ·+Λxt be the Λ-submodule of X generated by x1, · · · , xt. Then by the image
of Y in X/TX is X/TX, we know that Y + TX = X. Note that Y is compact, so it is closed in
X, so Z := X/Y is a pro-p abelian group, and the image of TX in Z is TZ. On the other hand, by
Y + TX = X, the image of TX in Z is also Z, so TZ = Z. Since T is topologically nilpotent in Λ, for
any open subgroup U of Z, there exists N ≥ 0 such that for any n ≥ N , TnZ ⊂ U . But by TZ = Z we
know that TnZ = Z for any n ≥ 0. Therefore Z must be zero. □
2.2. Noetherian integrally closed domain.
Proposition 2.6. For a Noetherian local domain A of dimension one, the following are equivalent.

• A is integrally closed.
• The maximal ideal of A is principal.
• A is a discrete valuation ring.
• A is a regular local ring.

(Mathlib: IsDiscreteValuationRing.TFAE and tfae_of_isNoetherianRing_of_isLocalRing_of_isDomain.)
Proof. Omitted. □
Definition 2.7. An integral domain A is called a Krull domain if it satisfies the following properties:
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• Ap is a discrete valuation ring for all height one primes p of A,
• A =

⋂
p∈Spec(A),ht(p)=1 Ap inside Frac(A),

• any nonzero element of A is contained in only a finitely many height one primes of A.

Lemma 2.8. Let A be a domain, S be a subset of Spec(A) such that Ap is integrally closed for all p ∈ S
and

⋂
p∈S Ap = A inside Frac(A). Then A itself is integrally closed.

(Generalization of IsIntegrallyClosed.of_localization_maximal. #24588)

#check isIntegrallyClosed_of_isLocalization
#check PrimeSpectrum.localization_comap_injective
#check PrimeSpectrum.localization_comap_range

Proof. Suppose x ∈ Frac(A) is integral over A. Then it’s also integral over Ap for all p ∈ Spec(A). Hence
x ∈ Ap for all p ∈ S. So x ∈

⋂
p∈S Ap = A. □

Proposition 2.9. A Noetherian ring is a Krull domain if and only if it is an integrally closed domain.

Proof. “⇒”: Lemma 2.8.
“⇐”: Let p be a height one prime of A. Then Ap is integrally closed (isIntegrallyClosed_of_isLocalization).

We have Spec(Ap) = {0, pAp} hence Ap is also a Noetherian local domain of dimension one. Now by
Proposition 2.6, Ap is a DVR.

??? ??? □

2.3. Semilocal PID.

Lemma 2.10. Let A be a semilocal ring, M be an A-module such that for any maximal ideal m of A,
Mm is a finitely generated Am-module. Then M is a finitely generated A-module.

Proof. Suppose Mmi
is generated by {xi,1, · · · , xi,ni

} for each maximal ideal mi of A. Let yi,k be a
numerator of xi,k, which is in A.

We prove that
⋃

i{yi,1 · · · , yi,ni
} is a finite set (Since A is semilocal) of generators of M . Let N be

the A-submodule of M generated by
⋃

i{yi,1 · · · , yi,ni}.
By local property (Submodule.eq_top_of_localization_maximal), it suffices to show that Nmi = Mmi

for all maximal ideals mi of A. It’s clear that Nmi
⊆Mmi

, so we only need to show that Mmi
⊆ Nmi

.
In other words, need to prove that Mmi

⊆ spanAmi
fi(
⋃

i{yi,1 · · · , yi,ni
}) where fi : M → Mmi

is the
localization map. It is enough to show the set of generators of Mmi

is contained in right hand side.
Take any x in the set of generators of Mmi

. It remains to show that the image of a numerator
of x under fi is in the generators of right hand side by Submodule.mem_of_numerator_image_mem and
Submodule.mem_span. i.e. fi(y) ∈ fi(

⋃
i{yi,1 · · · , yi,ni}) for some numerator y of x.

We take y as some yi,k as above. By definition of yi,k, we have fi(yi,k) in right hand side. □

Lemma 2.11. Let A be a semilocal (i.e. only finitely many maximal ideals) integral domain which is
not a field, such that for every maximal ideal p of A, Ap is a PID. Then A itself is a PID.

Proof. It’s known that a semilocal Dedeking domain is a PID (IsPrincipalIdealRing.of_finite_primes).
So we only need to show A is a Dedekind domain.

Let I be any ideal of A. Apply Lemma 2.10 to I we know that I is finitely generated. Hence A is a
Noetherian ring.

Let p 6= 0 be a prime ideal of A. Choose a maximal ideal m containing p. Then 0 6= pAm ⊂ mAm.
Since Am is a PID (hence DVR), we have Spec(Am) = {0,mAm}, so know that pAm = mAm, hence p = m
is maximal.

It’s known that if the localizations of a domain at all maximal ideals are integrally closed, then
the domain itself is integrally closed (IsIntegrallyClosed.of_localization_maximal). Hence our A is
integrally closed. This completes the proof. □

3. Structure of module up to pseudo-isomorphism

3.1. Characteristic ideal.

Proposition 3.1. Let A be a Noetherian ring, M be a finitely generated torsion A-module. Then for
any height one prime p of A, Mp is an Ap-module of finite length. Moreover, there are only finitely many
height one primes p of A such that Mp 6= 0.
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Proof. By Proposition 2.1, we may let 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M be a filtration of M such that
for each 1 ≤ i ≤ n, Mi/Mi−1

∼= A/pi for some prime ideal pi of A. Note that if p, q are prime ideals of
A, then (A/p)q 6= 0 if and only if p ⊂ q. Therefore by M is torsion A-module, we obtain that ht(pi) ≥ 1
for all 1 ≤ i ≤ n, and if p is a height one prime, then Mp 6= 0 if and only if pi ⊂ p for some i, by height
considerations this means that pi = p for some i, hence such p are only finitely many.

To prove `Ap
(Mp) < ∞, we only need to show that if p, q are prime ideals of A such that ht(p) ≥ 1

and ht(q) = 1, then (A/p)q is an Aq-module of finite length. In fact, by height considerations we know
that (A/p)q 6= 0 if and only if p = q, in this case (A/q)q = Aq/qAq = k(q) is the residue field of q, which
is an Aq-module of length one.

(Another proof without using Proposition 2.1. Note that Mp = 0 for all minimal prime ideals of
A, therefore if p is of height one such that Mp 6= 0, then p is a minimal element in Supp(M), hence
p ∈ Ass(M) which is a finite set. So there are only finitely many height one primes p of A such that
Mp 6= 0.

Suppose p is a height one prime such that Mp 6= 0. To prove that Mp is an Ap-module of finite length,
we only need to prove that the ring Ap/AnnAp

(Mp) is Artinian. Note that AnnAp
(Mp) = AnnA(M)p,

hence Ap/AnnAp
(Mp) = (A/AnnA(M))p whose prime ideals are one-to-one correspondence to prime

ideals of A between AnnA(M) and p, i.e. prime ideals in Supp(M) which is contained in p. Such
ideal can only be p itself, since M is torsion, every prime ideal in Supp(M) has height ≥ 1. Hence
Ap/AnnAp

(Mp) is Artinian.) □
In particular, this allows us to define the characteristic ideal of M .

Definition 3.2. Let A be a Noetherian ring, M be a finitely generated torsion A-module. The charac-
teristic ideal of M , denoted by charA(M), or simply char(M) if there is no risk of confusion, is defined
to be

charA(M) :=
∏

p∈Spec(A)
ht(p)=1

pℓAp (Mp).

Proposition 3.3. Let A be a Noetherian ring. Let 0→M ′ →M →M ′′ → 0 be a short exact sequence
of finitely generated A-modules. Then M is A-torsion if and only if M ′ and M ′′ are A-torsion. If M is
A-torsion, then charA(M) = charA(M ′) charA(M ′′).

Proof. Since localization is exact, for any prime ideal p of A, the 0 → M ′
p → Mp → M ′′

p → 0 is exact.
Let p runs over all minimal prime ideals of A, we obtain that M is A-torsion if and only if M ′ and M ′′

are A-torsion. Also, we have `Ap
(Mp) = `Ap

(M ′
p)+ `Ap

(M ′′
p ), hence charA(M) = charA(M ′) charA(M ′′)

holds. □
3.2. Pseudo-null module.
Definition 3.4. Let A be a Noetherian ring.

(i) A finitely generated A-module M is called a pseudo-null A-module, if Mp = 0 for all prime ideals
p of A of height ≤ 1.

(ii) An A-linear homomorphism f : M → N between finitely generated A-modules is called a pseudo-
isomorphism (pis for short), if its kernel and cokernel are pseudo-null A-modules.

(iii) Two finitely generated A-modules M,N are called pseudo-isomorphic (pis for short), denoted by
M ∼pis N or simply M ∼ N , if there exists a pseudo-isomorphism from M to N .

Remark 3.5. We warn the reader that M ∼ N not necessarily implies N ∼M .

Proposition 3.6. Let A be a Noetherian ring, M be a finitely generated A-module.
(i) If A is of Krull dimension ≤ 1, then M is pseudo-null if and only if M = 0.
(ii) If A is of Krull dimension 2, is a local ring with finite residue field, then M is pseudo-null if and

only if the cardinality of M is finite.

Proof. (i) Clear.
(ii) Let m be the maximal ideal of A. If M is finite, then there exists r ∈ N such that mrM = 0, hence

supp(M) ⊂ {m}. On the other hand, if supp(M) ⊂ {m}, then there exists r ∈ N such that mrM = 0,
hence mr ⊂ AnnA(M), therefore M is a finitely generated A/mr-module, which must be finite. □
Proposition 3.7. Let A be a Noetherian ring, M , N be finitely generated torsion A-modules.

(i) If M is pseudo-null, then charA(M) = 0.
(ii) If M ∼ N , then charA(M) = charA(N).
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Proof. Clear from definition and Proposition 3.3. □

3.3. Structure theorem.

Definition 3.8. Let A be a Noetherian ring. We say that the height one localization of A is PID (?), if

(3.1) For any finitely many height one primes p1, · · · , pr of A,
let S := A \

⋃r
i=1 pi, then S−1A is a PID.

Lemma 3.9. Let A be a Noetherian ring and let M,N be finitely generated torsion A-modules. Let
Σ = {q1, · · · , qr} = {q ∈ Supp(M) ∪ Supp(N) | ht(q) = 1} (by Proposition 3.1 this is a finite set). Let
S := A \

⋃r
i=1 qi which is a multiplicative subset of A. Let f : M → N be an A-module homomorphism.

Then f is a pseudo-isomorphism if and only if S−1f : S−1M → S−1N is an isomorphism.

Proof. Since the height one support of ker(f) and coker(f) are contained in Σ, and since S−1 ker(f) =
ker(S−1f), S−1 coker(f) = coker(S−1f) (localization is exact), we only need to prove that if M is a
finitely generated torsion A-module whose height one support is contained in Σ, then S−1M = 0 if and
only if M is pseudo-null (equivalently, Mq = 0 for all q ∈ Σ): “⇒”: Clear. “⇐”: For all q ∈ Σ, Mq = 0
means that Ann(M) 6⊂ q, since q are prime ideals, we have Ann(M) 6⊂

⋃
q∈Σ q, so S−1M = 0. □

Proposition 3.10 (Structure theorem of finitely generated torsion A-modules). Let A be a Noetherian
ring satisfying (3.1) and let M be a finitely generated torsion A-module. Then there exist height one
primes p1, · · · , ps of A and positive integers k1, · · · , ks, such that there exists a pseudo-isomorphism
M →

⊕s
i=1 A/pki

i . Moreover, the sequence (pki
i )si=1 is unique up to ordering.

Proof. Let Σ = {q1, · · · , qr} = {q ∈ Supp(M) | ht(q) = 1} (by Proposition 3.1 this is a finite set), and
let S = A \

⋃r
i=1 qi. Then S−1M is a finitely generated S−1A-module, and is torsion (for example, since

HomS−1A(S
−1M,S−1A) = S−1 HomA(M,A) = 0).

Note that the prime ideals P of S−1A are one-to-one correspondence to prime ideals p of A satisfying
p ∩ S = ∅ (i.e. p ⊂

⋃r
i=1 qi, i.e p ⊂ qi for some i), by P = S−1p and p = P ∩ A. In particular, S−1A is

of dimension ≤ 1.
By structure theorem of finitely generated torsion modules over a PID, there exist primes p1, · · · , ps

of A satisfying pi ∩ S = ∅, and positive integers k1, · · · , ks, such that there exists an isomorphism
g : S−1M

∼−→
⊕s

i=1 S
−1(A/pki

i ) of S−1A-modules. Since S−1M is torsion, the pi’s must be of height one.
Since HomS−1A(S

−1M,
⊕s

i=1 S
−1(A/pki

i )) = S−1 HomA(M,
⊕s

i=1 A/pki
i ), by multiplying an element of

S to g if necessary (this doesn’t change the fact that g is an isomorphism), we may find an A-linear map
f : M →

⊕s
i=1 A/pki

i such that g = S−1f . Now by (i) we know that f is a pseudo-isomorphism.
Conversely, if (pki

i )si=1 is such that there exists a pseudo-isomorphism M →
⊕s

i=1 A/pki
i , then enlarging

S if necessary, by Lemma 3.9, its localization S−1M →
⊕s

i=1 S
−1(A/pki

i ) is an isomorphism of S−1A-
module, hence by structure theorem of finitely generated torsion modules over a PID, the (pki

i )si=1 is
unique up to ordering. □

Proposition 3.11. Let A be a Noetherian ring satisfying (3.1). Let M,N be finitely generated torsion
A-modules. Then the followings are equivalent:

(a) There exists a pseudo-isomorphism M → N .
(b) For any height one prime p of A, we have Mp

∼= Np.
In particular, if there exists a pseudo-isomorphism M → N , then there also exists a pseudo-isomorphism
N →M .

Proof. (a)⇒(b): Clear.
(b)⇒(a): Let Σ = {q1, · · · , qr} = {q ∈ Supp(M) ∪ Supp(N) | ht(q) = 1} (by Proposition 3.1 this is a

finite set), and let S = A\
⋃r

i=1 qi. Since Mp
∼= Np for all height one primes p of A, the S−1M and S−1N ,

being finitely generated torsion modules over a PID S−1A, are isomorphic. Say g : S−1M
∼−→ S−1N is

an isomorphism of S−1A-modules. Since HomS−1A(S
−1M,S−1N) = S−1 HomA(M,N), by multiplying

an element of S to g if necessary (this doesn’t change the fact that g is an isomorphism), we may
find an A-linear map f : M → N such that g = S−1f . Now by Lemma 3.9 we know that f is a
pseudo-isomorphism. □
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3.4. Noetherian regular domain.

Proposition 3.12. A Noetherian regular domain (more generally, a Noetherian integrally closed domain)
satisfies (3.1).

Proof. If A is a Noetherian regular domain (more generally, a Noetherian integrally closed domain), then
for each height one prime p of A, Ap is a PID. For any finitely many height one primes p1, · · · , pr of A, let
S := A\

⋃r
i=1 pi, then S−1A is a semilocal integral domain, whose maximal ideals are S−1p1, · · · , S−1pr,

and we have (S−1A)S−1pi
= Api

, therefore by (i) we know that S−1A is a PID. □

4. Structure of Iwasawa module

4.1. Iwasawa algebra. Let p be a prime, Γ be a topological abelian group, isomorphic to Zp as a
topological abelian group, and let γ ∈ Γ be a topological generator of Γ (i.e. the subgroup {γn | n ∈ Z}
is dense in Γ). For each n ≥ 0 let Γn := Γ/Γpn .

Definition 4.1. The Iwasawa algebra is defined as the completed group algebra
Λ := Zp[[Γ]] := lim←−

n

Zp[Γn],

where the transition map Zp[Γn+1] → Zp[Γn] is induced by the natural projection Γn+1 → Γn. Each
Zp[Γn] is a free Zp-module of rank pn, we endow it with the p-adic topology, and endow Λ with the
subspace topology of the product topology of

∏∞
n=0 Zp[Γn].

Proposition 4.2. Let A be a ring, a be an ideal of A. Let M,N be two A-modules, and ϕ : M → N be
an A-module homomorphism. Then ϕ is continuous if we endow M,N with a-adic topology.

In particular, if ϕ is an A-module isomorphism, then it is a homeomorphism of topological spaces if
we endow M,N with a-adic topology.

Proof. Let x ∈ M and y := ϕ(x) ∈ N . Let U be any open neighborhood of y in N . Then there exists
some n such that y + anN ⊂ U . Take V = x+ anM then it is an open neighborhood of x in M , and we
have ϕ(V ) = y + ϕ(anM) = y + anϕ(M) ⊂ y + anN ⊂ U . Therefore ϕ is continuous. □

Proposition 4.3. For each n ≥ 0, there is an isomorphism of Zp-algebras

Zp[Γn]
∼−→ Zp[T ]/

(
(1 + T )p

n

− 1
)
, γ 7→ 1 + T.

They are all free Zp-modules of finite rank, we endow them with p-adic topology. By Proposition 4.2 we
know that it is a homeomorphism of topological spaces.

Proof. We have Γ/Γpn ∼= Z/pnZ as an abelian group, and the image of γ ∈ Γ in it is a generator of it.
By abuse of notation we still denote the image of γ ∈ Γ in it by γ. Then Z[Γ/Γpn

] as a Z-module is free
of rank pn and {γk}0≤k≤pn−1 is a basis of it. Now it’s easy to see that as a Zp-module homomorphism,
Zp[Γ/Γ

pn

]
∼−→ Zp[T ]/

(
(1 + T )p

n − 1
)
, γk 7→ (1 + T )k is well-defined and is a Zp-module isomorphism,

and preserves multiplication. Therefore it is an isomorphism of Zp-algebras. □

Proposition 4.4. There is an isomorphism of topological rings Zp[[T ]]
∼−→ Λ sending 1 + T to γ, where

Zp[[T ]] is endowed with (p, T )-adic topology.

Proof. We prove that there is a natural isomorphism of Zp-algebras

lim←−
n

Zp[T ]/
(
(1 + T )p

n

− 1
) ∼−→ Zp[[T ]],

and which is a homeomorphism of topological spaces, where the topology of the left hand side is the
subspace topology of the product topology of the topology defined in Proposition 4.3, and the topology of
the right hand side it the (p, T )-adic topology. From which we can obtain the isomorphism of topological
rings Λ

∼−→ Zp[[T ]] given by γ 7→ 1 + T .
For simplicity of notation, denote ϕn(T ) := (1+ T )p

n − 1. It’s easy to see that for each n ≥ 1 and for
all 1 ≤ i ≤ pn − 1, we have

(
pn

i

)
∈ pnZ, hence ϕn(T ) ∈ T pn

+ pnZ[T ]deg≤pn−1, in particular ϕn(T ) is a
distinguished polynomial of degree pn.

It’s clear that Zp[T ]deg≤pn−1
∼−→ Zp[T ]/(ϕn(T )) is an isomorphism of Zp-modules, and the Weierstrass

division (Proposition 4.7) implies that Zp[T ]deg≤pn−1
∼−→ Zp[[T ]]/(ϕn(T )) is also an isomorphism of Zp-

modules, therefore the natural ring homomorphism Zp[T ] ↪→ Zp[[T ]] induces an isomorphism of Zp-
algebras Zp[T ]/(ϕn(T ))

∼−→ Zp[[T ]]/(ϕn(T )) (Corollary 4.8).
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Since each Zp[[T ]]/(ϕn(T )) is a free Zp-module of finite rank endowed with the p-adic topology, we have
Zp[[T ]]/(ϕn(T )) ∼= lim←−m

Zp[[T ]]/(p
m, ϕn(T )), where each Zp[[T ]]/(p

m, ϕn(T )) is endowed with discrete
topology. Therefore we have the following isomorphisms of rings as well as topological spaces:

lim←−
n

p-adic topology︷ ︸︸ ︷
Zp[T ]/(ϕn(T ))

∼−→ lim←−
n

p-adic topology︷ ︸︸ ︷
Zp[[T ]]/(ϕn(T )) ∼= lim←−

m,n

discrete topology︷ ︸︸ ︷
Zp[[T ]]/(p

m, ϕn(T ))

(∗)∼= lim←−
k

discrete topology︷ ︸︸ ︷
Zp[[T ]]/(p, T )

k ∼−→
(p,T )-adic topology︷ ︸︸ ︷

Zp[[T ]] ,

here (∗) holds because {(pm, ϕn(T ))}m≥1,n≥1 and {(p, T )k}k≥1 are cofinal. In fact, for each k ≥ 1, and
for any m ≥ k and n ≥ k, we have (pm, ϕn(T )) ⊂ (p, T )k; conversely, for each m ≥ 1 and n ≥ 1,
we have (p, T )p

n ⊂ (p, ϕn(T )), and (p, ϕn(T ))
m ⊂ (pm, ϕn(T )), therefore for any k ≥ pnm, we have

(p, T )k ⊂ (p, T )p
nm ⊂ (p, ϕn(T ))

m ⊂ (pm, ϕn(T )). □

4.2. Weierstrass preparation theorem. This is WIP in #21944.

Definition 4.5. If (A,m, k) is a local ring, then a polynomial f(X) =
∑n

i=0 aiX
i ∈ A[X] is called a

distinguished polynomial if an = 1 and ai ∈ m for all 0 ≤ i ≤ n− 1.
(Mathlib: Polynomial.IsDistinguishedAt)

Proposition 4.6. Let A be a ring, and let f(X) =
∑∞

n=0 anX
n ∈ A[[X]] be a formal power series. Then

f(X) ∈ A[[X]]× if and only if a0 ∈ A×.
(Mathlib: PowerSeries.isUnit_iff_constantCoeff)

Proof. If f(X) ∈ A[[X]]×, then there exists g(X) =
∑∞

n=0 bnX
n ∈ A[[X]] such that f(X)g(X) = 1,

therefore by considering constant term we obtain a0b0 = 1, hence a0 ∈ A×. Conversely, if a0 ∈ A×,
by multiplying a−1

0 to f(X) if necessary, we may assume that a0 = 1 and f(X) = 1 − Xf1(X) for
some f1(X) ∈ A[[X]]. Since A[[X]] is (X)-adically complete and separated, it’s easy to see that 1 +∑∞

k=0 X
kf1(X)k converges (X)-adically in A[[X]] and which is the inverse of f(X). □

Proposition 4.7 (Weierstrass division). Let (A,m, k) be a complete local ring, g(X) =
∑∞

i=0 aiX
i ∈

A[[X]] \ m[[X]] be a formal power series such that not all of its coefficients are in m. Let n ≥ 0 be the
integer such that an ∈ A\m = A× and ai ∈ m for all 0 ≤ i ≤ n−1. Then for any f ∈ A[[X]], there exists
a unique formal power series q(X) ∈ A[[X]] and a unique polynomial r(X) ∈ A[X] of degree ≤ n − 1
such that f = gq + r.

Proof. Write g(X) =
∑n−1

i=0 aiX
i + Xng1(X) for some g1(X) ∈ A[[X]]×, and f(X) =

∑n−1
i=0 biX

i +
Xnf1(X) for some f1(X) ∈ A[[X]]. We construct a sequence (qk)

∞
k=1 inductively in A[[X]], such that

f − gqk ∈ A[X]deg≤n−1 + mk[[X]], and such that qk+1(X) − qk(X) ∈ mk[[X]]. We construct q1(X) :=
f1(X)g1(X)−1. Since ai ∈ m for all i ≤ n− 1, we have

f(X)− g(X)q1(X) = f(X)−

(
n−1∑
i=0

aiX
i

)
q1(X)−Xnf1(X)

=

n−1∑
i=0

biX
i −

(
n−1∑
i=0

aiX
i

)
q1(X) ∈ A[X]deg≤n−1 +m[[X]].

Suppose qk(X) is constructed, then we may write f(X) − g(X)qk(X) =
∑n−1

i=0 b
(k)
i Xi + Xnsk(X) for

some sk(X) ∈ mk[[X]], and we construct qk+1(X) := qk(X) + sk(X)g1(X)−1. Then we have

f(X)− g(X)qk+1(X) =

n−1∑
i=0

b
(k)
i Xi +Xnsk(X)−

(
n−1∑
i=0

aiX
i

)
sk(X)g1(X)−1 −Xnsk(X)

=

n−1∑
i=0

b
(k)
i Xi −

(
n−1∑
i=0

aiX
i

)
sk(X)g1(X)−1 ∈ A[X]deg≤n−1 +mk+1[[X]].

Since A[[X]] is complete and separated according to the sequence {mk[[X]]}k≥1 of ideals, there exists
a unique limit q(X) ∈ A[[X]] of the sequence (qk)

∞
k=1, which satisfies r := f − gq ∈ A[X]deg≤n−1.

To prove the uniqueness, suppose q(X) ∈ A[[X]] and r(X) ∈ A[X]deg≤n−1 such that gq = r, then we
prove by induction that for any k ≥ 0 we have q, r ∈ mk[[X]], which implies that q = r = 0. When k = 0
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there is nothing to prove. Suppose q, r ∈ mk[[X]] for some k ≥ 0. Then we have (
∑n−1

i=0 aiX
i)q(X) +

Xng1(X)q(X) = r(X), since ai ∈ m for all i ≤ n − 1, we obtain r(X) ∈ mk+1[X]deg≤n−1. Multiply
g1(X)−1 to both side, we obtain (

∑n−1
i=0 aiX

i)q(X)g1(X)−1+Xnq(X) = r(X)g1(X)−1, therefore q(X) ∈
mk+1[[X]]. □

Corollary 4.8. Let (A,m, k) be a complete local ring, g(X) =
∑n

i=0 aiX
i ∈ A[X] be a polynomial

such that an ∈ A \ m and ai ∈ m for all i < n. Then the natural map A[X]/(g) → A[[X]]/(g) is an
isomorphism.

Proof. Let f ∈ A[[X]]. Then by Proposition 4.7, we may find a unique formal power series q(X) ∈ A[[X]]
and a unique polynomial r(X) ∈ A[X] of degree ≤ n − 1 such that f = gq + r. Then r is the unique
inverse of f under the natural map A[X]/(g)→ A[[X]]/(g). □

Proposition 4.9 (Weierstrass preparation theorem). Let (A,m, k) be a complete local ring. Let g(X) ∈
A[[X]]\m[[X]] be a formal power series such that not all of its coefficients are in m. Then there is a unique
distinguished polynomial f(X) ∈ A[X] and a unique invertible formal power series h(X) ∈ A[[X]]× such
that g = fh.

Proof. Take f(X) = Xn in Proposition 4.7, we obtain q(X) ∈ A[[X]] and r(X) ∈ A[X]deg≤n−1 such
that Xn = g(X)q(X) + r(X). Since g(X) =

∑n−1
i=1 aiX

i + Xng1(X) with ai ∈ m for all i ≤ n − 1
and g1(X) ∈ A[[X]]×, we have r(X) ∈ m[X]deg≤n−1, and by the construction in (ii) we have q(X) ∈
g1(X)−1 +m[[X]] ⊂ A[[X]]×. Therefore take h(X) := q(X)−1 ∈ A[[X]]× and f(X) := Xn − r(X), then
f(X) is a distinguished polynomial of degree n, and g(X) = f(X)h(X) holds.

To prove the uniqueness, suppose f(X) and f ′(X) are two distinguished polynomials and u(X) ∈
A[[X]]× such that f ′(X) = f(X)u(X). Then u(X) ∈ k[[X]]× and we have f ′(X) = Xdeg(f ′) =
f(X)u(X) = Xdeg(f)u(X) ∈ k[[X]]×, which forces that deg(f) = deg(f ′) and u(X) = 1. Therefore
f ′(X) − f(X) ∈ A[X]deg≤deg(f)−1 and f ′(X) = f(X) + (f ′(X) − f(X)) is a Weierstrass division of f ′

by f , on the other hand, f ′(X) = f(X)u(X) is also a Weierstrass division of f ′ by f , hence by the
uniqueness of Weierstrass division we have u(X) = 1 and f ′(X) = f(X).

(Another proof. It is possible to prove Weierstrass preparation theorem using a form of Hensel’s lemma
presented in https://ncatlab.org/nlab/show/Hensel's+lemma.) □

4.3. Characteristic ideal.

Proposition 4.10. Λ ∼= Zp[[T ]] is a Noetherian regular local ring of Krull dimension 2.

Corollary 4.11. Hence by Proposition 2.4, Λ is a UFD (or maybe one can check directly that the I-adic
completion of a UFD is a UFD).

Corollary 4.12. Hence by Proposition 2.3, any height 1 prime p of Λ is principal.
(i) If the generator of p is in pZp[[T ]], then we must have p = (p).
(ii) If the generator of p is not in pZp[[T ]], then by Proposition 4.9 such p has a unique generator

which is a distinguished polynomial.

Therefore, we have

Proposition 4.13. If X is a finitely generated torsion Λ-module, then there exists a pseudo-isomorphism

X →
m⊕
i=1

Λ/(f bi
i )⊕

s⊕
j=1

Λ/(pnj )

where f1, · · · , fm are distinguished polynomials. The characteristic ideal charΛ(X) is generated by
p
∑s

j=1 nj
∏m

i=1 f
bi
i which is contained in p

∑s
j=1 njZp[[T ]] but not in p1+

∑s
j=1 njZp[[T ]].

Definition 4.14. (i) The µ-invariant of X is defined to be µ(X) :=
∑s

j=1 nj , and the λ-invariant of X
is defined to be λ(X) :=

∑m
i=1 bi deg fi.

(ii) If f ∈ Zp[[T ]] is not zero, then define µ(f) be the integer such that f ∈ pµ(f)Zp[[T ]] but f /∈
p1+µ(f)Zp[[T ]], define λ(f) be the leading degree of (p−µ(f)f mod p) ∈ Fp[[T ]].

Clearly, µ(X) and λ(X) are equal to µ(f) and λ(f) if charΛ(X) = (f).

Proposition 4.15. We have µ(X) =
∑∞

i=0 rankFp[[T ]] X[pi+1]/X[pi], and λ(X) = rankZp
X/X[p∞].

......
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4.4. Growth of coinvariant part.

Proposition 4.16. If X is a finitely generated torsion Λ-module such that X/(γpn−1)X is finite for any
n ≥ 0, then there exists some constant ν = ν(X) such that for all sufficiently large n, ordp(#(X/(γpn −
1)X)) = µ(X)pn + λ(X)n+ ν(X).

5. Arithmetic of Zp-extensions

5.1. The class group of Zp-extension of a number field. Let K be a number field, p be a prime,
K∞/K be a Zp-extension.

Definition 5.1. (i) For each n ≥ 0 let Ln be the p∞-Hilbert class field of Kn. That is, the maximal
unramified abelian extension of Kn of exponent p∞.

(ii) Let Xn := Gal(Ln/Kn) ∼= Cl(Kn)(p), the maximal quotient of the class group Cl(Kn) which is
p∞-torsion.

Definition 5.2. (i) Let L∞ :=
⋃

n≥0 Ln =
⋃

n≥0 LnK∞, then it is an unramified abelian pro-p extension
of K∞, because each LnK∞/K∞ is finite unramified abelian p-extension.

(ii) Let L′
∞ be the maximal unramified abelian pro-p extension of K∞, that is, the compositum of all

finite unramified abelian p-extensions of K∞.

Proposition 5.3. L′
∞ = L∞.

Note that L′
∞ = L∞ is a Galois extension of K.

Proof. It is easy to see that “⊃” holds. As for “⊂”, suppose E is a finite unramified abelian p-extension
of K∞, we want to prove E ⊂ L∞. The proof consists of the following steps:

(1) There exists an integer n0 ≥ 0 such that E/Kn0
is Galois.

(2) There exists an integer n1 ≥ n0 such that Gal(E/Kn1
) is abelian. So Gal(E/Kn1

) ∼= Gal(K∞/Kn1
)×

G, where G is a finite abelian group, corresponding to some En1
/Kn1

finite abelian extension, so that
E = K∞En1

.
(3) There exists an integer n2 ≥ n1 such that En1Kn2/Kn2 is a finite unramified abelian p-extension.

Therefore En1Kn2 ⊂ Ln2 , hence E ⊂ Ln2K∞ ⊂ L∞. □

Lemma 5.4. Suppose X has rank r as a Λ-module, then we have

rankZp

(
X/((1 + T pn

)− 1)X
)
= rpn +O(1)

as n→∞. This is left as an exercise. For example, if X = Λ, then r = 1, and rankZp

(
X/((1 + T pn

)−
1)X

)
= pn.

Proposition 5.5. If K is any number field, K∞/K is any Zp-extension, and l is a prime of K not lying
over p. Then l is unramified in K∞/K.

Proof. Let Dl be the decomposition subgroup of l in Γ := Gal(K∞/K). Let l = char(OK/l) 6= p, then
Kl/Ql is a finite extension, and let (K∞)l := lim−→(Kn)l, then Dl = Gal((K∞)l/Kl) is a subgroup of Zp.

We have Kl ⊂ Kunr
l ⊂ Kab

l , and

Gal(Kunr
l /Kl) ∼= Ẑ =

∏
q prime

Zq.

So Kl has at least one Zp-extension, i.e. the unique unramified Zp-extension. If there are other Zp-
extensions of Kl, then there exists a Galois extension of Kl with Galois group isomorphic to Z2

p.
However, Gal(Kab

l /Kunr
l ) doesn’t have a quotient isomorphic to Zp, because by local class field theory,

Gal(Kab
l /Kunr

l ) ∼= O×
Kl

∼= (a finite group)×Z[Kl:Ql]
l which is a finite group times a pro-l group, obviously

it doesn’t have a quotient isomorphic to Zp. So there is only one Zp-extension of Kl, note that (K∞)l/Kl

is either trivial or a Zp-extension, in both cases it must be contained in Kunr
l . □

Theorem 5.6 (Iwasawa). Suppose K is any number field, and K∞/K is any Zp-extension. Let L∞ be
the maximal unramified abelian pro-p extension of K∞, let X∞ := Gal(L∞/K∞) which is a Λ-module,
where Λ := Zp[[Γ]], isomorphic to Zp[[T ]] by choosing a topological generator γ of Γ, and maps T to
γ − 1. Then X∞ is a finitely generated torsion Λ-module.
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Proof. Consider Gal(K∞/Kn) = Γpn with topological generator γpn . Let En be the maximal abelian
extension of Kn contained in L∞, so that Gal(L∞/En) = Gal(L∞/Kn)

′ = (γpn − 1)X∞. Note that
X∞/TX∞ ∼= Gal(E0/K∞) is a finitely generated Zp-module, so by Nakayama lemma (Lemma 2.5) we
know that X∞ is finitely generated Λ-module.

Recall that if r = rankΛ X∞, then rankZp

(
X∞/(γpn − 1)X∞

)
= rpn +O(1) as n→∞ (Lemma 5.4).

So in order to prove X∞ is torsion (i.e. r = 0), we only need to prove rankZp

(
X∞/(γpn − 1)X∞

)
is

bounded.
Let p1, · · · , pt be the primes of K which are ramified in K∞/K. Then t is finite (by Proposition 5.5),

and number of primes of K∞ lying over p1, · · · , pt is also finite, because for each i, the index [Γ : Dpi
] is

finite. So let sn be the number of primes of Kn which are ramified in K∞/Kn, then sn is bounded.
Consider En/Kn. Recall that Ln is the p-Hilbert class field of Kn. Then Ln ⊂ L∞, K∞ ⊂ L∞,

so LnK∞ ⊂ En. Let I1, · · · , Isn be the inertia subgroups of Gal(En/Kn) for the ramified primes. For
1 ≤ j ≤ sn, Ij ∩Gal(En/K∞) = {1}, because En/K∞ is unramified. Therefore Ij maps injectively to a
closed subgroup of Γpn via the map Gal(En/Kn)→ Gal(K∞/Kn), in particular, Ij is isomorphic to Zp.

Now we come to the key point. Let I := I1 · · · Isn ⊂ Gal(En/Kn), then rankZp
I ≤ sn, and EI

n is
the maximal unramified abelian pro-p extension of Kn, so EI

n = Ln, hence rankZp Gal(En/Kn) ≤ sn,
because Gal(Ln/Kn) ∼= Cl(Kn)(p) is a finite group. Therefore rankZp

Gal(En/K∞) ≤ sn − 1, because
Gal(K∞/Kn) = Γpn is of Zp-rank 1. Note that Gal(En/K∞) ∼= X∞/(γpn−1)X∞, so rankZp

(
X∞/(γpn − 1)X∞

)
is bounded. □

5.2. Recover the finite level of class group from infinite level. Back to Kn and K∞. Recall that
X∞ := Gal(L∞/K∞) = lim←−Gal(Ln/Kn), and Xn := Gal(Ln/Kn) ∼= Cl(Kn)(p).

Let Γ := Gal(K∞/K) ∼= Zp, choose a topological generator γ of Γ (or equivalently, γ ∈ Γ such that
γ|K1 is nontrivial).

Proposition 5.7. (This is incorrect ...) For each n ≥ 0 there is an isomorphism X∞/(γpn − 1)X∞
∼−→

Xn.

Proof. Let G := Gal(L∞/K). We claim that (γ− 1)X∞ is a closed normal subgroup of G and X∞/(γ−
1)X∞ ∼= X0 = Cl(K)(p). We have a group extension

0→ X∞ → G→ Γ→ 1,

which induces
0→ X∞/(γ − 1)X∞ → G/(γ − 1)X∞ → Γ→ 1,

so G/(γ − 1)X∞ is abelian, and (γ − 1)X∞ is a closed normal subgroup. The proof of Proposition 5.8
can be easily modified to show that (γ − 1)X∞ = G′. Let E = LG′

∞ be the maximal abelian extension
of K contained in L∞. Let IP be the inertia subgroup of Gal(E/K) for a prime P | p, then L0 = EIP .
Let H = Gal(E/K∞) (so that K∞ = EH), then L0 ∩ K∞ = K, H ∩ IP = {1}, so E = L0K∞, and
Gal(E/K∞)

∼−→ Gal(L0/K) is a natural isomorphism. Hence we conclude that X∞/(γ − 1)X∞
∼−→ X0.

In general, consider Ln/Kn, the p-Hilbert class field of Kn, so that Gal(Ln/Kn) =: Xn
∼= Cl(Kn)(p).

We have Gal(K∞/Kn) ∼= Γpn ∼= pnZp with topological generator γpn . We have K∞/Kn is ramified at
only one place and is totally ramified. So similarly, we get X∞/(γpn − 1)X∞

∼−→ Xn. □

We state a group theory result. Suppose G is any group, X is a normal abelian subgroup of G.
Then G/X acts on X as follows: if σ ∈ G/X , lift σ to an element σ̃ in G. Then define for all x ∈ X ,
σ(x) := σ̃xσ̃−1. Note that σ(x)x−1 = σ̃xσ̃−1x−1 ∈ G′.

Assume G/X is cyclic with a generator g, then G′ = {g(x)x−1 | x ∈ X}. We write X additively, then
g(x)x−1 becomes g(x)− x = (g − 1)x.

If we view g−1 as an element in Z[G/X ], and view X as a Z[G/X ]-module, then {g(x)−x | x ∈ X} =
(g − 1)X is a Z[G/X ]-submodule of X . Hence (g − 1)X is a normal subgroup of G.

Proposition 5.8. G′ = (g − 1)X .

Proof. “⊃” is trivial. As for “⊂”, we have an exact sequence

0→ X/(g − 1)X → G/(g − 1)X → G/X → 0,

and G/(g − 1)X is a central extension of G/X (which is cyclic) by X/(g − 1)X , so it is abelian, so
G′ ⊂ (g − 1)X . □

10



Appendix A. Known results in mathlib

A.1. Rings.
• Commutative ring with unit CommRing
• Field Field

– assertion that a ring is a field IsField
• assertion that a ring is an integral domain IsDomain
• assertion that a ring is PID: IsDomain + IsPrincipalIdealRing
• assertion that a ring is UFD: IsDomain + UniqueFactorizationMonoid
• Noetherian ring IsNoetherianRing

– finitely many minimal prime ideals minimalPrimes.finite_of_isNoetherianRing
– finitely many minimal prime over-ideals Ideal.finite_minimalPrimes_of_isNoetherianRing

• Artin ring IsArtinianRing
– it is also Noetherian instIsNoetherianRingOfIsArtinianRing (instance, shouldn’t need to call

directly)
• Characteristic of a ring ringChar, exponential characteristic ringExpChar

– assertion that a ring is of specific characteristic CharZero, CharP, ExpChar
• Krull dimension of a ring ringKrullDim

– assertion that a ring is of Krull dimension ≤ n Ring.KrullDimLE
– assertion that a ring is of Krull dimension ≤ 1 Ring.DimensionLEOne

A.2. Ideals.
• Ideal of a ring Ideal

– assertion that an ideal is principal Submodule.IsPrincipal
– assertion that an ideal is a prime ideal Ideal.IsPrime

∗ Ideal.Quotient.isDomain_iff_prime
– assertion that an ideal is a maximal ideal Ideal.IsMaximal

∗ Ideal.Quotient.maximal_ideal_iff_isField_quotient
∗ Ideal.Quotient.field (instance, shouldn’t need to call directly)

• Height of an ideal Ideal.height, height of a prime ideal Ideal.primeHeight
– assertion that an ideal is the whole ring or of finite height Ideal.FiniteHeight

• the Type of prime ideals of a ring Spec(R) PrimeSpectrum
• set of minimal primes minimalPrimes, set of minimal prime over-ideals Ideal.minimalPrimes

A.3. Modules.
• Support of a module Supp(M) Module.support
• Annihilator of a module Ann(M) Module.annihilator
• M∗ = HomZ(M,Q/Z) CharacterModule
• Associated primes of a module Ass(M) associatedPrimes
• Finitely generated module Module.Finite
• Free module Module.Free
• Projective module Module.Projective
• Injective module Module.Injective
• Flat module Module.Flat
• Torsion module Module.IsTorsion
• Torsion submodule Submodule.torsion

– Torsion-free module Submodule.torsion R M = ⊥
• Noetherian module IsNoetherian
• Artin module IsArtinian
• assertion that a module is of finite length IsFiniteLength

– in the statement of theorems use IsNoetherian + IsArtinian instead
– if and only if exists composition series isFiniteLength_iff_exists_compositionSeries
– length of a module `A(M) Module.length

• composition series CompositionSeries
– usage:

∃ (s : CompositionSeries (Submodule R M)), RelSeries.head s = ⊥ ∧ RelSeries.last s = ⊤
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A.4. Number theory.
• assertion that a field is a number field (i.e. finite extension of Q) NumberField
• ring of integers OK NumberField.RingOfIntegers
• assertion that a ring is a Dedekind domain IsDedekindDomain

– unique factorization of ideals Ideal.uniqueFactorizationMonoid (instance, shouldn’t need to
call directly)

• fraction ideals FractionalIdeal
– usage: if R is a domain, K is fraction field of R, then the Type of fraction ideals in K is:

FractionalIdeal (nonZeroDivisors R) K
– ordp(a) FractionalIdeal.count

• ideal class group ClassGroup
– finite NumberField.RingOfIntegers.instFintypeClassGroup (instance, shouldn’t need to call

directly)
– class number NumberField.classNumber

• places of a number field K: AbsoluteValue K ℝ, NumberField.place
– infinite places NumberField.InfinitePlace
– real and complex places NumberField.InfinitePlace.IsReal, NumberField.InfinitePlace.IsComplex
– r1, r2 NumberField.InfinitePlace.nrRealPlaces, NumberField.InfinitePlace.nrComplexPlaces
– r1 + r2 − 1 NumberField.Units.rank
– Dirichlet unit theorem NumberField.Units.rank_modTorsion

• assertion that a field extension is abelian #23669
• assertion that a field extension is cyclotomic IsCyclotomicExtension

– cyclotomic field K(µn) CyclotomicField
• p-adic cyclotomic character: if µp∞ ⊂ L then χcyc : Aut(L)→ Z×

p #21934
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