Documentation

Iwasawalib.Algebra.Exact.KerCokerComp

Long exact sequence for the kernel and cokernel of a composition #

If f : M →ₗ[A] N and g : N →ₗ[A] P are A-module homomorphisms, then there is a natural long exact sequence 0 → ker f → ker (g ∘ f) → ker g → coker f → coker (g ∘ f) → coker g → 0.

This is the same as in Mathlib/CategoryTheory/Abelian/DiagramLemmas/KernelCokernelComp.lean but we don't import category theory in this file.

@[reducible, inline]
abbrev Module.KerCokerComp.f₁ {A : Type u} [Ring A] {M : Type v} [AddCommGroup M] [Module A M] {N : Type w} [AddCommGroup N] [Module A N] {P : Type x} [AddCommGroup P] [Module A P] (f : M →ₗ[A] N) (g : N →ₗ[A] P) :

The map ker f → ker (g ∘ f) given by inclusion.

Equations
Instances For
    @[reducible, inline]
    abbrev Module.KerCokerComp.f₂ {A : Type u} [Ring A] {M : Type v} [AddCommGroup M] [Module A M] {N : Type w} [AddCommGroup N] [Module A N] {P : Type x} [AddCommGroup P] [Module A P] (f : M →ₗ[A] N) (g : N →ₗ[A] P) :

    The map ker (g ∘ f) → ker g induced by f.

    Equations
    Instances For
      @[reducible, inline]
      abbrev Module.KerCokerComp.f₃ {A : Type u} [Ring A] {M : Type v} [AddCommGroup M] [Module A M] {N : Type w} [AddCommGroup N] [Module A N] {P : Type x} [AddCommGroup P] [Module A P] (f : M →ₗ[A] N) (g : N →ₗ[A] P) :

      The map ker g → coker f given by ker g ↪ N ↠ coker f.

      Equations
      Instances For
        @[reducible, inline]
        abbrev Module.KerCokerComp.f₄ {A : Type u} [Ring A] {M : Type v} [AddCommGroup M] [Module A M] {N : Type w} [AddCommGroup N] [Module A N] {P : Type x} [AddCommGroup P] [Module A P] (f : M →ₗ[A] N) (g : N →ₗ[A] P) :

        The map coker f → coker (g ∘ f) induced by g.

        Equations
        Instances For
          @[reducible, inline]
          abbrev Module.KerCokerComp.f₅ {A : Type u} [Ring A] {M : Type v} [AddCommGroup M] [Module A M] {N : Type w} [AddCommGroup N] [Module A N] {P : Type x} [AddCommGroup P] [Module A P] (f : M →ₗ[A] N) (g : N →ₗ[A] P) :

          The map coker (g ∘ f) → coker g given by projection.

          Equations
          Instances For
            theorem Module.KerCokerComp.injective_f₁ {A : Type u} [Ring A] {M : Type v} [AddCommGroup M] [Module A M] {N : Type w} [AddCommGroup N] [Module A N] {P : Type x} [AddCommGroup P] [Module A P] (f : M →ₗ[A] N) (g : N →ₗ[A] P) :
            theorem Module.KerCokerComp.exact_f₁_f₂ {A : Type u} [Ring A] {M : Type v} [AddCommGroup M] [Module A M] {N : Type w} [AddCommGroup N] [Module A N] {P : Type x} [AddCommGroup P] [Module A P] (f : M →ₗ[A] N) (g : N →ₗ[A] P) :
            Function.Exact (f₁ f g) (f₂ f g)
            theorem Module.KerCokerComp.exact_f₂_f₃ {A : Type u} [Ring A] {M : Type v} [AddCommGroup M] [Module A M] {N : Type w} [AddCommGroup N] [Module A N] {P : Type x} [AddCommGroup P] [Module A P] (f : M →ₗ[A] N) (g : N →ₗ[A] P) :
            Function.Exact (f₂ f g) (f₃ f g)
            theorem Module.KerCokerComp.exact_f₃_f₄ {A : Type u} [Ring A] {M : Type v} [AddCommGroup M] [Module A M] {N : Type w} [AddCommGroup N] [Module A N] {P : Type x} [AddCommGroup P] [Module A P] (f : M →ₗ[A] N) (g : N →ₗ[A] P) :
            Function.Exact (f₃ f g) (f₄ f g)
            theorem Module.KerCokerComp.exact_f₄_f₅ {A : Type u} [Ring A] {M : Type v} [AddCommGroup M] [Module A M] {N : Type w} [AddCommGroup N] [Module A N] {P : Type x} [AddCommGroup P] [Module A P] (f : M →ₗ[A] N) (g : N →ₗ[A] P) :
            Function.Exact (f₄ f g) (f₅ f g)
            theorem Module.KerCokerComp.surjective_f₅ {A : Type u} [Ring A] {M : Type v} [AddCommGroup M] [Module A M] {N : Type w} [AddCommGroup N] [Module A N] {P : Type x} [AddCommGroup P] [Module A P] (f : M →ₗ[A] N) (g : N →ₗ[A] P) :