Documentation

Iwasawalib.Algebra.InverseLimit.Basic

Inverse limit of algebras #

Let R be a commutative semiring, I be an index set with defined, A be a family of R-algebras indexed by I, f be a family of algebra homomorphisms, consisting of a map from A j to A i whenever i ≤ j (i.e. map from larger index to smaller index). One can define the inverse limit Algebra.InverseLimit with respect to these maps f.

noncomputable def Algebra.InverseLimit.toSubalgebra {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) :
Subalgebra R ((i : I) → A i)

The inverse limit of algebras as a subalgebra of products of A i.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem Algebra.InverseLimit.mem_toSubalgebra {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) {x : (i : I) → A i} :
    x toSubalgebra f ∀ ⦃i j : I⦄ (h : i j), (f h) (x j) = x i
    @[reducible, inline]
    abbrev Algebra.InverseLimit {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) :
    Type (max u_2 u_3)

    The inverse limit of algebras as a Type.

    Equations
    Instances For
      noncomputable def Algebra.InverseLimit.mk {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] {f : i j : I⦄ → i jA j →ₐ[R] A i} (x : (i : I) → A i) (hx : ∀ ⦃i j : I⦄ (h : i j), (f h) (x j) = x i) :

      Construct an element of the inverse limit of algebras from a compatible family of elements.

      Equations
      Instances For
        @[simp]
        theorem Algebra.InverseLimit.mk_coe {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] {f : i j : I⦄ → i jA j →ₐ[R] A i} (x : (i : I) → A i) (hx : ∀ ⦃i j : I⦄ (h : i j), (f h) (x j) = x i) :
        (mk x hx) = x
        noncomputable def Algebra.InverseLimit.proj {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) (i : I) :

        The proj is the natural map from the inverse limit of A to A i for i : I.

        Equations
        Instances For
          @[simp]
          theorem Algebra.InverseLimit.proj_apply {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) (i : I) (x : InverseLimit f) :
          (proj f i) x = x i
          @[simp]
          theorem Algebra.InverseLimit.algHom_comp_proj {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) {i j : I} (h : i j) :
          (f h).comp (proj f j) = proj f i
          noncomputable def Algebra.InverseLimit.lift {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) {B : Type u_4} [Semiring B] [Algebra R B] (φ : (i : I) → B →ₐ[R] A i) ( : ∀ ⦃i j : I⦄ (h : i j), (f h).comp (φ j) = φ i) :

          If a family of algebra maps B → A i for i : I satisfy compatibility conditions, then they lift to a map $B\to\varprojlim_i A_i$.

          Equations
          • Algebra.InverseLimit.lift f φ = { toFun := fun (x : B) => fun (i : I) => (φ i) x, , map_one' := , map_mul' := , map_zero' := , map_add' := , commutes' := }
          Instances For
            @[simp]
            theorem Algebra.InverseLimit.lift_apply_coe {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) {B : Type u_4} [Semiring B] [Algebra R B] {φ : (i : I) → B →ₐ[R] A i} { : ∀ ⦃i j : I⦄ (h : i j), (f h).comp (φ j) = φ i} (x : B) (i : I) :
            ((lift f φ ) x) i = (φ i) x
            theorem Algebra.InverseLimit.proj_comp_lift {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) {B : Type u_4} [Semiring B] [Algebra R B] {φ : (i : I) → B →ₐ[R] A i} { : ∀ ⦃i j : I⦄ (h : i j), (f h).comp (φ j) = φ i} (i : I) :
            (proj f i).comp (lift f φ ) = φ i
            theorem Algebra.InverseLimit.eq_lift_of_proj_comp_eq {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) {B : Type u_4} [Semiring B] [Algebra R B] {φ : (i : I) → B →ₐ[R] A i} { : ∀ ⦃i j : I⦄ (h : i j), (f h).comp (φ j) = φ i} (g : B →ₐ[R] InverseLimit f) (hg : ∀ (i : I), (proj f i).comp g = φ i) :
            g = lift f φ

            The lift map $B\to\varprojlim_i A_i$ is unique.

            noncomputable def Algebra.InverseLimit.lift₂' {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) {J : Type u_4} {B : JType u_5} [(i : J) → Semiring (B i)] [(i : J) → Algebra R (B i)] [LE J] (g : i j : J⦄ → i jB j →ₐ[R] B i) {j' : IJ} (φ : (i : I) → B (j' i) →ₐ[R] A i) ( : ∀ ⦃i j : I⦄ (h : i j), ∃ (h' : j' i j' j), (f h).comp (φ j) = (φ i).comp (g h')) :

            If for each i : I, an element j' i : J and an algebra map B (j' i) → A i is given, satisfying compatibility conditions, then they lift to a map $\varprojlim_j B_j\to\varprojlim_i A_i$.

            This is the primed version since its definition involves a choice of i ↦ j' i. An unprimed version will be defined later with assumptions on index sets.

            Equations
            Instances For
              @[simp]
              theorem Algebra.InverseLimit.lift₂'_apply_coe {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) {J : Type u_4} {B : JType u_5} [(i : J) → Semiring (B i)] [(i : J) → Algebra R (B i)] [LE J] (g : i j : J⦄ → i jB j →ₐ[R] B i) {j' : IJ} {φ : (i : I) → B (j' i) →ₐ[R] A i} { : ∀ ⦃i j : I⦄ (h : i j), ∃ (h' : j' i j' j), (f h).comp (φ j) = (φ i).comp (g h')} (x : InverseLimit g) (i : I) :
              ((lift₂' f g φ ) x) i = (φ i) (x (j' i))
              theorem Algebra.InverseLimit.proj_comp_lift₂' {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) {J : Type u_4} {B : JType u_5} [(i : J) → Semiring (B i)] [(i : J) → Algebra R (B i)] [LE J] (g : i j : J⦄ → i jB j →ₐ[R] B i) {j' : IJ} {φ : (i : I) → B (j' i) →ₐ[R] A i} { : ∀ ⦃i j : I⦄ (h : i j), ∃ (h' : j' i j' j), (f h).comp (φ j) = (φ i).comp (g h')} (i : I) :
              (proj f i).comp (lift₂' f g φ ) = (φ i).comp (proj g (j' i))
              theorem Algebra.InverseLimit.eq_lift₂'_of_proj_comp_eq {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) {J : Type u_4} {B : JType u_5} [(i : J) → Semiring (B i)] [(i : J) → Algebra R (B i)] [LE J] (g : i j : J⦄ → i jB j →ₐ[R] B i) {j' : IJ} {φ : (i : I) → B (j' i) →ₐ[R] A i} { : ∀ ⦃i j : I⦄ (h : i j), ∃ (h' : j' i j' j), (f h).comp (φ j) = (φ i).comp (g h')} (h : InverseLimit g →ₐ[R] InverseLimit f) (hh : ∀ (i : I), (proj f i).comp h = (φ i).comp (proj g (j' i))) :
              h = lift₂' f g φ

              The lift map $\varprojlim_j B_j\to\varprojlim_i A_i$ is unique.

              @[simp]
              theorem Algebra.InverseLimit.lift₂'_id {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) :
              lift₂' f f (fun (i : I) => AlgHom.id R (A i)) = AlgHom.id R (InverseLimit f)
              @[simp]
              theorem Algebra.InverseLimit.lift₂'_comp_lift₂' {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) {J : Type u_4} {B : JType u_5} [(i : J) → Semiring (B i)] [(i : J) → Algebra R (B i)] [LE J] (g : i j : J⦄ → i jB j →ₐ[R] B i) {j' : IJ} {φ : (i : I) → B (j' i) →ₐ[R] A i} { : ∀ ⦃i j : I⦄ (h : i j), ∃ (h' : j' i j' j), (f h).comp (φ j) = (φ i).comp (g h')} {K : Type u_6} {C : KType u_7} [(i : K) → Semiring (C i)] [(i : K) → Algebra R (C i)] [LE K] (h : i j : K⦄ → i jC j →ₐ[R] C i) {k' : JK} {ψ : (i : J) → C (k' i) →ₐ[R] B i} { : ∀ ⦃i j : J⦄ (h' : i j), ∃ (h'' : k' i k' j), (g h').comp (ψ j) = (ψ i).comp (h h'')} :
              (lift₂' f g φ ).comp (lift₂' g h ψ ) = lift₂' f h (fun (i : I) => (φ i).comp (ψ (j' i)))
              noncomputable def Algebra.InverseLimit.congr {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) {B : IType u_4} [(i : I) → Semiring (B i)] [(i : I) → Algebra R (B i)] (g : i j : I⦄ → i jB j →ₐ[R] B i) (φ : (i : I) → B i ≃ₐ[R] A i) ( : ∀ ⦃i j : I⦄ (h : i j), (f h).comp (φ j) = (↑(φ i)).comp (g h)) :

              If A i and B i defined over the same index set are isomorphic, then their inverse limits are also isomorphic.

              Equations
              Instances For
                noncomputable def Algebra.InverseLimit.congr₂ {R : Type u_1} [CommSemiring R] {I : Type u_2} {A : IType u_3} [(i : I) → Semiring (A i)] [(i : I) → Algebra R (A i)] [LE I] (f : i j : I⦄ → i jA j →ₐ[R] A i) {J : Type u_4} {B : JType u_5} [(i : J) → Semiring (B i)] [(i : J) → Algebra R (B i)] [Preorder J] (g : i j : J⦄ → i jB j →ₐ[R] B i) (hgcomp : ∀ ⦃i j k : J⦄ (hij : i j) (hjk : j k), (g hij).comp (g hjk) = g ) (e : I ≃o J) (φ : (i : I) → B (e i) ≃ₐ[R] A i) ( : ∀ ⦃i j : I⦄ (h : i j), (f h).comp (φ j) = (↑(φ i)).comp (g )) :

                If A i and B j defined over two isomorphic index sets I and J are isomorphic, such that J is a Preorder (which implies that I is also), and such that the algebra maps on B are functorial, then their inverse limits are also isomorphic.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For