Supplementary results for abelian extension #
Product of a family of group homomorphisms (should go mathlib) #
def
MonoidHom.pi
{M : Type u_1}
{ι : Type u_2}
{N : ι → Type u_3}
[MulOneClass M]
[(i : ι) → MulOneClass (N i)]
(f : (i : ι) → M →* N i)
:
Combine a family of MonoidHoms f_i : M →* N_i into M →* ∏ i, N i
given by x ↦ (i ↦ f_i x).
Equations
- MonoidHom.pi f = { toFun := fun (x : M) (i : ι) => (f i) x, map_one' := ⋯, map_mul' := ⋯ }
Instances For
def
AddMonoidHom.pi
{M : Type u_1}
{ι : Type u_2}
{N : ι → Type u_3}
[AddZeroClass M]
[(i : ι) → AddZeroClass (N i)]
(f : (i : ι) → M →+ N i)
:
Combine a family of AddMonoidHoms f_i : M →+ N_i into M →+ ∏ i, N i
given by x ↦ (i ↦ f_i x).
Equations
- AddMonoidHom.pi f = { toFun := fun (x : M) (i : ι) => (f i) x, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
AddMonoidHom.pi_apply
{M : Type u_1}
{ι : Type u_2}
{N : ι → Type u_3}
[AddZeroClass M]
[(i : ι) → AddZeroClass (N i)]
(f : (i : ι) → M →+ N i)
(x : M)
(i : ι)
:
@[simp]
theorem
MonoidHom.pi_apply
{M : Type u_1}
{ι : Type u_2}
{N : ι → Type u_3}
[MulOneClass M]
[(i : ι) → MulOneClass (N i)]
(f : (i : ι) → M →* N i)
(x : M)
(i : ι)
:
theorem
MonoidHom.ker_pi
{M : Type u_1}
{ι : Type u_2}
{N : ι → Type u_3}
[Group M]
[(i : ι) → MulOneClass (N i)]
(f : (i : ι) → M →* N i)
:
theorem
AddMonoidHom.ker_pi
{M : Type u_1}
{ι : Type u_2}
{N : ι → Type u_3}
[AddGroup M]
[(i : ι) → AddZeroClass (N i)]
(f : (i : ι) → M →+ N i)
:
The group homomorphism Gal(⨆ i, E_i/F) → Π i, Gal(E_i/F) #
theorem
IntermediateField.fixingSubgroup_iSup
{F : Type u_1}
{K : Type u_2}
{ι : Type u_3}
[Field F]
[Field K]
[Algebra F K]
(E : ι → IntermediateField F K)
:
TODO: go mathlib
noncomputable def
IntermediateField.piRestrictNormalHom
{F : Type u_1}
{K : Type u_2}
{ι : Type u_3}
[Field F]
[Field K]
[Algebra F K]
(E : ι → IntermediateField F K)
[∀ (i : ι), Normal F ↥(E i)]
:
The group homomorphism Gal(K/F) → Π i, Gal(E_i/F) for a family E_i of intermediate fields
of K / F which are normal over F.
Equations
- IntermediateField.piRestrictNormalHom E = MonoidHom.pi fun (i : ι) => AlgEquiv.restrictNormalHom ↥(E i)
Instances For
theorem
IntermediateField.ker_piRestrictNormalHom
{F : Type u_1}
{K : Type u_2}
{ι : Type u_3}
[Field F]
[Field K]
[Algebra F K]
(E : ι → IntermediateField F K)
[∀ (i : ι), Normal F ↥(E i)]
:
noncomputable def
IntermediateField.piRestrictNormalHom'
{F : Type u_1}
{K : Type u_2}
{ι : Type u_3}
[Field F]
[Field K]
[Algebra F K]
(E : ι → IntermediateField F K)
[∀ (i : ι), Normal F ↥(E i)]
:
The (injective) group homomorphism Gal((⨆ i, E_i)/F) → Π i, Gal(E_i/F) for a family E_i of
intermediate fields of K / F which are normal over F.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
IntermediateField.injective_piRestrictNormalHom'
{F : Type u_1}
{K : Type u_2}
{ι : Type u_3}
[Field F]
[Field K]
[Algebra F K]
(E : ι → IntermediateField F K)
[∀ (i : ι), Normal F ↥(E i)]
:
Compositum of abelian extensions is abelian #
instance
IntermediateField.isAbelianGalois_iSup
{F : Type u_1}
{K : Type u_2}
{ι : Type u_3}
[Field F]
[Field K]
[Algebra F K]
(E : ι → IntermediateField F K)
[∀ (i : ι), IsAbelianGalois F ↥(E i)]
:
IsAbelianGalois F ↥(⨆ (i : ι), E i)
instance
IntermediateField.isAbelianGalois_sup
{F : Type u_1}
{K : Type u_2}
[Field F]
[Field K]
[Algebra F K]
(E1 E2 : IntermediateField F K)
[IsAbelianGalois F ↥E1]
[IsAbelianGalois F ↥E2]
:
IsAbelianGalois F ↥(E1 ⊔ E2)