Complementary results to p-primary subgroups #
theorem
CommMonoid.mem_primaryComponent
(G : Type u_1)
[CommMonoid G]
(p : ℕ)
[Fact (Nat.Prime p)]
(g : G)
:
TODO: go to mathlib
theorem
AddCommMonoid.mem_primaryComponent
(G : Type u_1)
[AddCommMonoid G]
(p : ℕ)
[Fact (Nat.Prime p)]
(g : G)
:
theorem
AddCommGroup.mem_primaryComponent
(G : Type u_1)
[AddCommGroup G]
(p : ℕ)
[Fact (Nat.Prime p)]
(g : G)
:
The prime-to-n component is the submonoid of elements with additive
order prime to n.
Equations
- AddCommMonoid.primeToComponent G n = { carrier := {g : G | (addOrderOf g).Coprime n}, add_mem' := ⋯, zero_mem' := ⋯ }
Instances For
@[simp]
@[simp]
The prime-to-n component is the subgroup of elements with order prime to n.
Equations
- CommGroup.primeToComponent G n = { toSubmonoid := CommMonoid.primeToComponent G n, inv_mem' := ⋯ }
Instances For
The prime-to-n component is the subgroup of elements with additive order
prime to n.
Equations
- AddCommGroup.primeToComponent G n = { toAddSubmonoid := AddCommMonoid.primeToComponent G n, neg_mem' := ⋯ }
Instances For
@[simp]
theorem
CommGroup.card_primeToComponent_coprime
(G : Type u_1)
[CommGroup G]
[Finite G]
(n : ℕ)
:
(Nat.card ↥(primeToComponent G n)).Coprime n
theorem
AddCommGroup.card_primeToComponent_coprime
(G : Type u_1)
[AddCommGroup G]
[Finite G]
(n : ℕ)
:
(Nat.card ↥(primeToComponent G n)).Coprime n
noncomputable def
CommGroup.equivPrimeToComponentProdPrimaryComponent
(G : Type u_1)
[CommGroup G]
(p : ℕ)
[Fact (Nat.Prime p)]
(ht : Monoid.IsTorsion G)
:
A torsion abelian group is canonically isomorphic to the product of its prime-to-p component
and its p-primary component.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
AddCommGroup.equivPrimeToComponentProdPrimaryComponent
(G : Type u_1)
[AddCommGroup G]
(p : ℕ)
[Fact (Nat.Prime p)]
(ht : AddMonoid.IsTorsion G)
:
A torsion additive abelian group is canonically isomorphic to the product of its
prime-to-p component and its p-primary component.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CommGroup.equivPrimeToComponentProdPrimaryComponent_symm_apply
(G : Type u_1)
[CommGroup G]
(p : ℕ)
[Fact (Nat.Prime p)]
(ht : Monoid.IsTorsion G)
(g : ↥(primeToComponent G p) × ↥(primaryComponent G p))
:
@[simp]
theorem
AddCommGroup.equivPrimeToComponentProdPrimaryComponent_symm_apply
(G : Type u_1)
[AddCommGroup G]
(p : ℕ)
[Fact (Nat.Prime p)]
(ht : AddMonoid.IsTorsion G)
(g : ↥(primeToComponent G p) × ↥(primaryComponent G p))
: