Documentation

Iwasawalib.NumberTheory.Padics.HasBasis

Some convenient results on neighborhood basis of ℤₚ around 0 #

Open ideal of ℤₚ #

If x ≠ 0, then R ≃ ⟨x⟩, a ↦ x * a is an isomorphism of topological module.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem PadicInt.isOpen_pi_span_p_pow (ι : Type u_1) [Finite ι] (p : ) [Fact (Nat.Prime p)] (n : ) :
    IsOpen (Ideal.pi fun (x : ι) => Ideal.span {p ^ n})

    Index of ideals of ℤₚ #

    theorem PadicInt.index_pi_span_p_pow (ι : Type u_1) [Finite ι] (p : ) [Fact (Nat.Prime p)] (n : ) :
    (Submodule.toAddSubgroup (Ideal.pi fun (x : ι) => Ideal.span {p ^ n})).index = p ^ (n * Nat.card ι)

    Neighborhood basis of ℤₚ around 0 #

    theorem PadicInt.nhds_zero_hasAntitoneBasis_pi_span_p_pow (ι : Type u_1) [Finite ι] (p : ) [Fact (Nat.Prime p)] :
    (nhds 0).HasAntitoneBasis fun (n : ) => (Ideal.pi fun (x : ι) => Ideal.span {p ^ n})

    Open and closed subgroups of ℤₚ #

    theorem PadicInt.denseRange_of_not_dvd (p : ) [Fact (Nat.Prime p)] (a b : ) (hb : ¬p b) :
    DenseRange fun (x : ) => a + b * x
    theorem PadicInt.smul_mem_of_isClosed (p : ) [Fact (Nat.Prime p)] (G : AddSubsemigroup ℤ_[p]) (hG : IsClosed G) (c : ℤ_[p]) {x : ℤ_[p]} (hx : x G) :
    c x G