Some convenient results on neighborhood basis of ℤₚ
around 0
#
Open ideal of ℤₚ
#
theorem
IsDedekindDomain.isOpen_span_singleton_of_ne_zero
{R : Type u_2}
[CommRing R]
[TopologicalSpace R]
[IsTopologicalRing R]
[CompactSpace R]
[T2Space R]
[IsDedekindDomain R]
{x : R}
(hx : x ≠ 0)
:
IsOpen ↑(Ideal.span {x})
theorem
IsDedekindDomain.isOpen_span_singleton_pow_of_irreducible
{R : Type u_2}
[CommRing R]
[TopologicalSpace R]
[IsTopologicalRing R]
[CompactSpace R]
[T2Space R]
[IsDedekindDomain R]
{p : R}
(hp : Irreducible p)
(n : ℕ)
:
IsOpen ↑(Ideal.span {p ^ n})
Index of ideals of ℤₚ
#
Neighborhood basis of ℤₚ
around 0
#
theorem
PadicInt.nhds_zero_hasAntitoneBasis_span_p_pow
(p : ℕ)
[Fact (Nat.Prime p)]
:
(nhds 0).HasAntitoneBasis fun (n : ℕ) => ↑(Ideal.span {↑p ^ n})
theorem
PadicInt.nhds_zero_hasAntitoneBasis_pi_span_p_pow
(ι : Type u_1)
[Finite ι]
(p : ℕ)
[Fact (Nat.Prime p)]
:
(nhds 0).HasAntitoneBasis fun (n : ℕ) => ↑(Ideal.pi fun (x : ι) => Ideal.span {↑p ^ n})
Open and closed subgroups of ℤₚ
#
theorem
PadicInt.exists_eq_ideal_of_addSubsemigroup_of_isClosed
(p : ℕ)
[Fact (Nat.Prime p)]
(G : AddSubsemigroup ℤ_[p])
(hne : (↑G).Nonempty)
(hG : IsClosed ↑G)
:
∃ (I : Ideal ℤ_[p]), G = I.toAddSubsemigroup
theorem
PadicInt.exists_eq_ideal_of_addSubmonoid_of_isClosed
(p : ℕ)
[Fact (Nat.Prime p)]
(G : AddSubmonoid ℤ_[p])
(hG : IsClosed ↑G)
:
∃ (I : Ideal ℤ_[p]), G = I.toAddSubmonoid
theorem
PadicInt.exists_eq_ideal_of_addSubgroup_of_isClosed
(p : ℕ)
[Fact (Nat.Prime p)]
(G : AddSubgroup ℤ_[p])
(hG : IsClosed ↑G)
:
∃ (I : Ideal ℤ_[p]), G = Submodule.toAddSubgroup I
theorem
PadicInt.exists_eq_span_p_pow_of_isOpen
(p : ℕ)
[Fact (Nat.Prime p)]
(G : AddSubgroup ℤ_[p])
(hG : IsOpen ↑G)
:
∃ (n : ℕ), G = Submodule.toAddSubgroup (Ideal.span {↑p ^ n})