Documentation

Iwasawalib.NumberTheory.RamificationInertia.Infinite

Inertia subgroup, etc. for an infinite extension of algebraic number fields #

We will use the following conventions:

References:

Gelfand-Tornheim theorem: if a field K has an infinite place, then there exists an embedding K →+* ℂ such that the absolute value is equivalent to the usual absolute value on .

Proof: see E. Artin, Theory of Algebraic Numbers, pp. 45 and 67.

A non-archimedean absolute value is a valuation.

Equations
  • v.toValuation h = { toFun := fun (x : R) => v x, , map_zero' := , map_one' := , map_mul' := , map_add_le_max' := }
Instances For
    @[simp]
    theorem AbsoluteValue.toValuation_toFun_coe {R : Type u_1} [Ring R] [Nontrivial R] (v : AbsoluteValue R ) (h : IsNonarchimedean v) (x : R) :
    ((v.toValuation h) x) = v x

    Decomposition subgroup for a place #

    def AbsoluteValue.decompositionSubgroup (F : Type u_1) {K : Type u_2} [Field F] [Field K] [Algebra F K] (v : AbsoluteValue K ) :
    Subgroup Gal(K/F)

    The decomposition subgroup Dᵥ(K/F) in Gal(K/F) for a place v of K consists of all σ preserving the set {x | v x ≤ 1}. This definition also works for infinite places.

    Equations
    Instances For
      theorem AbsoluteValue.mem_decompositionSubgroup_iff (F : Type u_1) {K : Type u_2} [Field F] [Field K] [Algebra F K] (v : AbsoluteValue K ) (σ : Gal(K/F)) :
      σ decompositionSubgroup F v σ '' {x : K | v x 1} = {x : K | v x 1}
      theorem AbsoluteValue.apply_le_one_of_mem_decompositionSubgroup {F : Type u_1} {K : Type u_2} [Field F] [Field K] [Algebra F K] (v : AbsoluteValue K ) {σ : Gal(K/F)} (h : σ decompositionSubgroup F v) {x : K} (hx : v x 1) :
      v (σ x) 1
      theorem AbsoluteValue.apply_le_one_iff_of_mem_decompositionSubgroup {F : Type u_1} {K : Type u_2} [Field F] [Field K] [Algebra F K] (v : AbsoluteValue K ) {σ : Gal(K/F)} (h : σ decompositionSubgroup F v) {x : K} :
      v (σ x) 1 v x 1

      Inertia subgroup for a place #

      def AbsoluteValue.inertiaSubgroup (F : Type u_1) {K : Type u_2} [Field F] [Field K] [Algebra F K] (v : AbsoluteValue K ) :
      Subgroup Gal(K/F)

      The inertia subgroup Iᵥ(K/F) in Gal(K/F) for a finite place v of K consists of all σ preserving the set {x | v x ≤ 1} and such that for all such x, v (σ x - x) < 1. For infinite places Iᵥ(K/F) is just defined to be the decomposition subgroup Dᵥ(K/F).

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem AbsoluteValue.mem_inertiaSubgroup_iff (F : Type u_1) {K : Type u_2} [Field F] [Field K] [Algebra F K] (v : AbsoluteValue K ) (σ : Gal(K/F)) :
        σ inertiaSubgroup F v σ '' {x : K | v x 1} = {x : K | v x 1} (¬IsNonarchimedean v ∀ (x : K), v x 1v (σ x - x) < 1)
        theorem AbsoluteValue.mem_inertiaSubgroup_iff_of_isNonarchimedean (F : Type u_1) {K : Type u_2} [Field F] [Field K] [Algebra F K] (v : AbsoluteValue K ) (h : IsNonarchimedean v) (σ : Gal(K/F)) :
        σ inertiaSubgroup F v σ '' {x : K | v x 1} = {x : K | v x 1} ∀ (x : K), v x 1v (σ x - x) < 1
        theorem AbsoluteValue.mem_inertiaSubgroup_iff_of_not_isNonarchimedean (F : Type u_1) {K : Type u_2} [Field F] [Field K] [Algebra F K] (v : AbsoluteValue K ) (h : ¬IsNonarchimedean v) (σ : Gal(K/F)) :
        σ inertiaSubgroup F v σ '' {x : K | v x 1} = {x : K | v x 1}
        theorem AbsoluteValue.apply_le_one_of_mem_inertiaSubgroup {F : Type u_1} {K : Type u_2} [Field F] [Field K] [Algebra F K] (v : AbsoluteValue K ) {σ : Gal(K/F)} (h : σ inertiaSubgroup F v) {x : K} (hx : v x 1) :
        v (σ x) 1
        theorem AbsoluteValue.apply_le_one_iff_of_mem_inertiaSubgroup {F : Type u_1} {K : Type u_2} [Field F] [Field K] [Algebra F K] (v : AbsoluteValue K ) {σ : Gal(K/F)} (h : σ inertiaSubgroup F v) {x : K} :
        v (σ x) 1 v x 1
        theorem AbsoluteValue.apply_sub_lt_one_of_mem_inertiaSubgroup_of_isNonarchimedean {F : Type u_1} {K : Type u_2} [Field F] [Field K] [Algebra F K] (v : AbsoluteValue K ) {σ : Gal(K/F)} (h : σ inertiaSubgroup F v) (h2 : IsNonarchimedean v) {x : K} (hx : v x 1) :
        v (σ x - x) < 1

        Assertion that a place is unramified #

        If L / K / F is an extension tower with L / F Galois, v is a place of L, then Dᵥ(L/K) = Dᵥ(L/F) ⊓ Gal(L/K).

        If L / K / F is an extension tower with L / F Galois, v is a place of L, then Iᵥ(L/K) ≤ Iᵥ(L/F).

        If L / K / F is an extension tower with L / F Galois, v is a place of L, then Iᵥ(L/K) = Iᵥ(L/F) ⊓ Gal(L/K).

        If L / K / F is an extension tower with L / F Galois, v is a place of L, then Iᵥ(L/K) ≤ Iᵥ(L/F).

        def AbsoluteValue.IsUnramifiedOfIsScalarTower (F : Type u_1) (K : Type u_2) [Field F] [Field K] [Algebra F K] {L : Type u_3} [Field L] [Algebra F L] [Algebra K L] [IsScalarTower F K L] [Normal F L] (v : AbsoluteValue L ) :

        If L / K / F is an extension tower with L / F Galois, v is a place of L, then v is called unramified in L / K, if Iᵥ(L/F) ≤ Gal(L/K), or equivalently Iᵥ(L/K) = Iᵥ(L/F).

        Equations
        Instances For