Consequences of Krull's Height Theorem #
theorem
UniqueFactorizationMonoid.isPrincipal_of_height_eq_one
{R : Type u_1}
[CommRing R]
[IsDomain R]
[UniqueFactorizationMonoid R]
(p : Ideal R)
[p.IsPrime]
(h : p.height = 1)
:
Every height one prime ideal in a UFD is principal.
theorem
UniqueFactorizationMonoid.of_primeHeight_eq_one_imp_isPrincipal
(R : Type u_1)
[CommRing R]
[IsDomain R]
[IsNoetherianRing R]
(h : ∀ (p : PrimeSpectrum R), p.asIdeal.primeHeight = 1 → Submodule.IsPrincipal p.asIdeal)
:
A Noetherian domain whose height one prime ideals are principal is a UFD.
theorem
IsNoetherianRing.uniqueFactorizationMonoid_iff
(R : Type u_1)
[CommRing R]
[IsDomain R]
[IsNoetherianRing R]
:
UniqueFactorizationMonoid R ↔ ∀ (p : PrimeSpectrum R), p.asIdeal.primeHeight = 1 → Submodule.IsPrincipal p.asIdeal
A Noetherian domain is a UFD if and only if every height one prime ideal is principal.