Documentation

Iwasawalib.RingTheory.Polynomial.OneAddXPowSubOne

Polynomial (1 + X) ^ n - 1 #

This file contains results on polynomial (1 + X) ^ n - 1. Mathematically, it is viewed as the multiply-by-n map [n] of the formal multiplicative group $\widehat{\mathbb{G}}_m$. In particular, (1 + X) ^ p ^ n - 1 is a distinguished polynomial at p, and the ideal generated by p ^ m and it are cofinal with (p ^ m, X ^ n) (Polynomial.oneAddXPowSubOne_mem_span_natCast_X_pow and Polynomial.span_natCast_X_pow_le_span_natCast_pow_oneAddXPowSubOne).

noncomputable def Polynomial.oneAddXPowSubOne (R : Type u_1) (n : ) [Semiring R] :

The Polynomial.oneAddXPowSubOne R n is the polynomial (1 + X) ^ n - 1 in R[X] (Polynomial.oneAddXPowSubOne_def). Since we allow R to be a Semiring, its actual definition is ∑ i ∈ [1, n + 1), X ^ i * n.choose i.

Equations
Instances For
    theorem Polynomial.coeff_oneAddXPowSubOne_eq (R : Type u_1) (n : ) [Semiring R] (i : ) :
    (oneAddXPowSubOne R n).coeff i = if i = 0 then 0 else (n.choose i)
    theorem Polynomial.oneAddXPowSubOne_def (R : Type u_1) (n : ) [Ring R] :
    oneAddXPowSubOne R n = (1 + X) ^ n - 1
    theorem Polynomial.oneAddXPowSubOne_mul_geom_sum (R : Type u_1) (n : ) [Semiring R] (m : ) :
    oneAddXPowSubOne R n * iFinset.range m, (1 + X) ^ (n * i) = oneAddXPowSubOne R (n * m)
    theorem Polynomial.dvd_coeff_oneAddXPowSubOne_of_ne (R : Type u_1) (p : ) [Fact (Nat.Prime p)] (n : ) [Semiring R] (i : ) (hi : i p ^ n) :
    p (oneAddXPowSubOne R (p ^ n)).coeff i
    theorem Polynomial.test1_isTwoSided (R : Type u_1) [Semiring R] (Y : Polynomial R) (hY : ∀ (q : Polynomial R), Commute Y q) (Z : Polynomial R) (hZ : ∀ (q : Polynomial R), Commute Z q) :
    theorem Polynomial.test1_le (R : Type u_1) [Semiring R] (m : ) (hm : m 0) (Y : Polynomial R) (hY : ∀ (q : Polynomial R), Commute Y q) (Z : Polynomial R) (hZ : ∀ (q : Polynomial R), Commute Z q) :
    theorem Ideal.IsTwoSided.pow_mul {R : Type u_2} [Semiring R] {I : Ideal R} [I.IsTwoSided] (m n : ) :
    I ^ (m * n) = (I ^ m) ^ n
    theorem Polynomial.span_natCast_X_pow_le_span_natCast_pow_oneAddXPowSubOne (R : Type u_1) (p : ) [Fact (Nat.Prime p)] (n : ) [Ring R] (m k : ) (hm : m 0) (hk : k p ^ n * m) :