Polynomial (1 + X) ^ n - 1
#
This file contains results on polynomial (1 + X) ^ n - 1
. Mathematically, it is viewed as
the multiply-by-n
map [n]
of the formal multiplicative group $\widehat{\mathbb{G}}_m$.
In particular, (1 + X) ^ p ^ n - 1
is a distinguished polynomial at p
,
and the ideal generated by p ^ m
and it are cofinal with (p ^ m, X ^ n)
(Polynomial.oneAddXPowSubOne_mem_span_natCast_X_pow
and
Polynomial.span_natCast_X_pow_le_span_natCast_pow_oneAddXPowSubOne
).
The Polynomial.oneAddXPowSubOne R n
is the polynomial (1 + X) ^ n - 1
in R[X]
(Polynomial.oneAddXPowSubOne_def
). Since we allow R
to be a Semiring
, its actual definition
is ∑ i ∈ [1, n + 1), X ^ i * n.choose i
.
Equations
- Polynomial.oneAddXPowSubOne R n = ∑ i ∈ Finset.Ico 1 (n + 1), Polynomial.X ^ i * ↑(n.choose i)
Instances For
@[simp]
@[simp]
theorem
Polynomial.commute_oneAddXPowSubOne
(R : Type u_1)
(n : ℕ)
[Semiring R]
(p : Polynomial R)
:
Commute (oneAddXPowSubOne R n) p
theorem
Polynomial.coeff_oneAddXPowSubOne_eq_one_of_ne_zero
(R : Type u_1)
(n : ℕ)
[Semiring R]
(hn : n ≠ 0)
:
theorem
Polynomial.degree_oneAddXPowSubOne_of_ne_zero
(R : Type u_1)
(n : ℕ)
[Semiring R]
[Nontrivial R]
(hn : n ≠ 0)
:
theorem
Polynomial.monic_oneAddXPowSubOne_of_ne_zero
(R : Type u_1)
(n : ℕ)
[Semiring R]
(hn : n ≠ 0)
:
(oneAddXPowSubOne R n).Monic
theorem
Polynomial.test1_isTwoSided
(R : Type u_1)
[Semiring R]
(Y : Polynomial R)
(hY : ∀ (q : Polynomial R), Commute Y q)
(Z : Polynomial R)
(hZ : ∀ (q : Polynomial R), Commute Z q)
:
(Ideal.span {Y, Z}).IsTwoSided
theorem
Polynomial.test1_le
(R : Type u_1)
[Semiring R]
(m : ℕ)
(hm : m ≠ 0)
(Y : Polynomial R)
(hY : ∀ (q : Polynomial R), Commute Y q)
(Z : Polynomial R)
(hZ : ∀ (q : Polynomial R), Commute Z q)
:
theorem
Polynomial.isDistinguishedAt_oneAddXPowSubOne
(R : Type u_1)
(p : ℕ)
[Fact (Nat.Prime p)]
(n : ℕ)
[CommRing R]
:
(oneAddXPowSubOne R (p ^ n)).IsDistinguishedAt (Ideal.span {↑p})