Documentation

Iwasawalib.RingTheory.PseudoNull.StructureTheorem

Structure theorem of finitely generated torsion module up to pseudo-isomorphism #

theorem PrimeSpectrum.localization_comap_range_eq_of_isDomain_of_primeHeight_eq_one {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] (s : Set (PrimeSpectrum R)) (hs : s {p : PrimeSpectrum R | p.asIdeal.primeHeight = 1}) (hn : s.Nonempty) (hfin : s.Finite) [IsLocalization (⨅ ps, p.asIdeal.primeCompl) S] :
Set.range (comap (algebraMap R S)) = s {{ asIdeal := , isPrime := }}

Krull domain #

class IsKrullDomain (A : Type u_1) [CommRing A] [IsDomain A] :

An integral domain A is a Krull domain if it satisfies the following properties:

  • Aₚ is a discrete valuation ring for every height one prime p of A.
  • The intersection of all such Aₚ is equal to A.
  • Any nonzero element of A is contained in only a finitely many height one primes of A.

See https://en.wikipedia.org/wiki/Krull_ring.

Instances

    A Noetherian ring is a Krull domain if and only if it is an integrally closed domain.

    Height one localization is PID #

    A typeclass asserting that for any finitely many height one primes p₁, ..., pₙ of A, let S = A \ ⋃ i, pᵢ, then S⁻¹A is a PID.

    Instances
      noncomputable def IsLocalizedModule.getNumerator {R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {M' : Type u_3} [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M →ₗ[R] M') [IsLocalizedModule S f] (x : M') :
      M
      Equations
      Instances For
        theorem IsLocalizedModule.mem_of_getNumerator_image_mem {R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {M' : Type u_3} [AddCommMonoid M] [AddCommMonoid M'] {R' : Type u_4} [CommSemiring R'] [Algebra R R'] [Module R' M'] [IsLocalization S R'] [Module R M] [Module R M'] [IsScalarTower R R' M'] (f : M →ₗ[R] M') [IsLocalizedModule S f] {N' : Submodule R' M'} {x : M'} (hx : f (getNumerator S f x) N') :
        x N'

        If the image of getNumerator x under f is in a submodule N' of M', then x itself lies in N'.

        noncomputable def IsLocalizedModule.finsetNumerator {R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {M' : Type u_3} [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M →ₗ[R] M') [IsLocalizedModule S f] [DecidableEq M] (s : Finset M') :
        Equations
        Instances For
          theorem Module.finite_of_finite_isLocalized_maximal {R : Type u_1} [CommSemiring R] [Finite (MaximalSpectrum R)] (M : Type u_2) [AddCommMonoid M] [Module R M] (Rₚ : (P : Ideal R) → [P.IsMaximal] → Type u_3) [(P : Ideal R) → [inst : P.IsMaximal] → CommSemiring (Rₚ P)] [(P : Ideal R) → [inst : P.IsMaximal] → Algebra R (Rₚ P)] [∀ (P : Ideal R) [inst : P.IsMaximal], IsLocalization.AtPrime (Rₚ P) P] (Mₚ : (P : Ideal R) → [P.IsMaximal] → Type u_4) [(P : Ideal R) → [inst : P.IsMaximal] → AddCommMonoid (Mₚ P)] [(P : Ideal R) → [inst : P.IsMaximal] → Module R (Mₚ P)] [(P : Ideal R) → [inst : P.IsMaximal] → Module (Rₚ P) (Mₚ P)] [∀ (P : Ideal R) [inst : P.IsMaximal], IsScalarTower R (Rₚ P) (Mₚ P)] (f : (P : Ideal R) → [inst : P.IsMaximal] → M →ₗ[R] Mₚ P) [∀ (P : Ideal R) [inst : P.IsMaximal], IsLocalizedModule P.primeCompl (f P)] (H : ∀ (P : Ideal R) [inst : P.IsMaximal], Module.Finite (Rₚ P) (Mₚ P)) :

          If a semilocal integral domain which is not a field satisfies that it localized at all maximal ideals is a PID, then itself is a PID.

          Structure theorem under the assumption that height one localization is PID #

          Let A be a Noetherian ring and let M, N be finitely generated torsion A-modules. Let p₁, ..., pₙ be all height one primes in Supp(M) ∪ Supp(N), let S = A \ ⋃ i, pᵢ. Then an A-linear map f : M → N is a pseudo-isomorphism if and only if S⁻¹f : S⁻¹M → S⁻¹N is an isomorphism.

          theorem Module.IsTorsion.isPseudoIsomorphic_pi {A : Type u} [CommRing A] [IsNoetherianRing A] [HeightOneLocalizationIsPID A] {M : Type u_1} [AddCommGroup M] [Module A M] [Module.Finite A M] (hMT : IsTorsion A M) :
          ∃ (ι : Type u) (x : Fintype ι) (p : ιPrimeSpectrum A) (_ : ∀ (i : ι), (p i).asIdeal.primeHeight = 1) (e : ι), M ∼ₚᵢₛ[A] ((i : ι) → A (p i).asIdeal ^ e i)

          Structure theorem of finitely generated torsion modules up to pseudo-isomorphism: A finitely generated torsion module over a Noetherian ring A satisfying HeightOneLocalizationIsPID is pseudo-isomorphic to a finite product of some A ⧸ pᵢ ^ eᵢ where the pᵢ ^ eᵢ are powers of height one primes of A.

          Let A be a Noetherian ring satisfying HeightOneLocalizationIsPID. Then two finitely generated torsion A-modules M, N are pseudo-isomorphic if and only if their localizations at all height one primes are isomorphic.

          theorem Module.IsPseudoIsomorphic.symm {A : Type u_1} [CommRing A] [IsNoetherianRing A] [HeightOneLocalizationIsPID A] {M : Type u_2} [AddCommGroup M] [Module A M] [Module.Finite A M] (hMT : IsTorsion A M) {N : Type u_3} [AddCommGroup N] [Module A N] [Module.Finite A N] (hNT : IsTorsion A N) (H : M ∼ₚᵢₛ[A] N) :

          Let A be a Noetherian ring satisfying HeightOneLocalizationIsPID. Then pseudo-isomorphic between two finitely generated torsion A-modules are symmectric.

          Let A be a Noetherian ring satisfying HeightOneLocalizationIsPID. Then pseudo-isomorphic between two finitely generated torsion A-modules are symmectric.