Supplementary results for open normal subgroups #
@[simp]
theorem
OpenNormalSubgroup.coe_toOpenSubgroup
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{U : OpenNormalSubgroup G}
:
@[simp]
theorem
OpenNormalAddSubgroup.coe_toOpenAddSubgroup
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{U : OpenNormalAddSubgroup G}
:
theorem
OpenNormalSubgroup.coe_toSubgroup
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{U : OpenNormalSubgroup G}
:
theorem
OpenNormalAddSubgroup.coe_toAddSubgroup
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{U : OpenNormalAddSubgroup G}
:
@[simp]
theorem
OpenNormalSubgroup.mem_toOpenSubgroup
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{U : OpenNormalSubgroup G}
{g : G}
:
@[simp]
theorem
OpenNormalAddSubgroup.mem_toOpenAddSubgroup
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{U : OpenNormalAddSubgroup G}
{g : G}
:
theorem
OpenNormalSubgroup.mem_toSubgroup
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{U : OpenNormalSubgroup G}
{g : G}
:
theorem
OpenNormalAddSubgroup.mem_toAddSubgroup
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{U : OpenNormalAddSubgroup G}
{g : G}
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
OpenNormalAddSubgroup.toOpenAddSubgroup_top
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
:
Equations
- OpenNormalSubgroup.instInhabited = { default := ⊤ }
Equations
- OpenNormalAddSubgroup.instInhabited = { default := ⊤ }
def
OpenNormalSubgroup.prod
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{H : Type u_2}
[Group H]
[TopologicalSpace H]
(U : OpenNormalSubgroup G)
(V : OpenNormalSubgroup H)
:
OpenNormalSubgroup (G × H)
The product of two open normal subgroups as an open normal subgroup of the product group.
Instances For
def
OpenNormalAddSubgroup.prod
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{H : Type u_2}
[AddGroup H]
[TopologicalSpace H]
(U : OpenNormalAddSubgroup G)
(V : OpenNormalAddSubgroup H)
:
OpenNormalAddSubgroup (G × H)
The product of two open normal subgroups as an open normal subgroup of the product group.
Instances For
@[simp]
theorem
OpenNormalSubgroup.coe_prod
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{H : Type u_2}
[Group H]
[TopologicalSpace H]
(U : OpenNormalSubgroup G)
(V : OpenNormalSubgroup H)
:
@[simp]
theorem
OpenNormalAddSubgroup.coe_prod
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{H : Type u_2}
[AddGroup H]
[TopologicalSpace H]
(U : OpenNormalAddSubgroup G)
(V : OpenNormalAddSubgroup H)
:
@[simp]
theorem
OpenNormalSubgroup.toOpenSubgroup_prod
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{H : Type u_2}
[Group H]
[TopologicalSpace H]
(U : OpenNormalSubgroup G)
(V : OpenNormalSubgroup H)
:
@[simp]
theorem
OpenNormalAddSubgroup.toOpenAddSubgroup_prod
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{H : Type u_2}
[AddGroup H]
[TopologicalSpace H]
(U : OpenNormalAddSubgroup G)
(V : OpenNormalAddSubgroup H)
:
theorem
OpenNormalSubgroup.toSubgroup_prod
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{H : Type u_2}
[Group H]
[TopologicalSpace H]
(U : OpenNormalSubgroup G)
(V : OpenNormalSubgroup H)
:
theorem
OpenNormalAddSubgroup.toAddSubgroup_prod
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{H : Type u_2}
[AddGroup H]
[TopologicalSpace H]
(U : OpenNormalAddSubgroup G)
(V : OpenNormalAddSubgroup H)
:
Equations
- OpenNormalSubgroup.instOrderTop = { toTop := OpenNormalSubgroup.instTop, le_top := ⋯ }
Equations
- OpenNormalAddSubgroup.instOrderTop = { toTop := OpenNormalAddSubgroup.instTop, le_top := ⋯ }
@[simp]
theorem
OpenNormalSubgroup.toOpenSubgroup_le
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{U V : OpenNormalSubgroup G}
:
@[simp]
theorem
OpenNormalAddSubgroup.toOpenAddSubgroup_le
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{U V : OpenNormalAddSubgroup G}
:
theorem
OpenNormalSubgroup.toSubgroup_le
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{U V : OpenNormalSubgroup G}
:
theorem
OpenNormalAddSubgroup.toAddSubgroup_le
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{U V : OpenNormalAddSubgroup G}
:
def
OpenNormalSubgroup.comap
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{N : Type u_2}
[Group N]
[TopologicalSpace N]
(f : G →* N)
(hf : Continuous ⇑f)
(H : OpenNormalSubgroup N)
:
The preimage of an OpenNormalSubgroup
along a continuous Monoid
homomorphism
is an OpenNormalSubgroup
.
Equations
- OpenNormalSubgroup.comap f hf H = { toOpenSubgroup := OpenSubgroup.comap f hf H.toOpenSubgroup, isNormal' := ⋯ }
Instances For
def
OpenNormalAddSubgroup.comap
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{N : Type u_2}
[AddGroup N]
[TopologicalSpace N]
(f : G →+ N)
(hf : Continuous ⇑f)
(H : OpenNormalAddSubgroup N)
:
The preimage of an OpenNormalAddSubgroup
along a continuous AddMonoid
homomorphism is an OpenNormalAddSubgroup
.
Equations
- OpenNormalAddSubgroup.comap f hf H = { toOpenAddSubgroup := OpenAddSubgroup.comap f hf H.toOpenAddSubgroup, isNormal' := ⋯ }
Instances For
@[simp]
theorem
OpenNormalSubgroup.coe_comap
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{N : Type u_2}
[Group N]
[TopologicalSpace N]
(H : OpenNormalSubgroup N)
(f : G →* N)
(hf : Continuous ⇑f)
:
@[simp]
theorem
OpenNormalAddSubgroup.coe_comap
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{N : Type u_2}
[AddGroup N]
[TopologicalSpace N]
(H : OpenNormalAddSubgroup N)
(f : G →+ N)
(hf : Continuous ⇑f)
:
@[simp]
theorem
OpenNormalSubgroup.toOpenSubgroup_comap
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{N : Type u_2}
[Group N]
[TopologicalSpace N]
(H : OpenNormalSubgroup N)
(f : G →* N)
(hf : Continuous ⇑f)
:
@[simp]
theorem
OpenNormalAddSubgroup.toOpenAddSubgroup_comap
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{N : Type u_2}
[AddGroup N]
[TopologicalSpace N]
(H : OpenNormalAddSubgroup N)
(f : G →+ N)
(hf : Continuous ⇑f)
:
theorem
OpenNormalSubgroup.toSubgroup_comap
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{N : Type u_2}
[Group N]
[TopologicalSpace N]
(H : OpenNormalSubgroup N)
(f : G →* N)
(hf : Continuous ⇑f)
:
theorem
OpenNormalAddSubgroup.toAddSubgroup_comap
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{N : Type u_2}
[AddGroup N]
[TopologicalSpace N]
(H : OpenNormalAddSubgroup N)
(f : G →+ N)
(hf : Continuous ⇑f)
:
@[simp]
theorem
OpenNormalSubgroup.mem_comap
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{N : Type u_2}
[Group N]
[TopologicalSpace N]
{H : OpenNormalSubgroup N}
{f : G →* N}
{hf : Continuous ⇑f}
{x : G}
:
@[simp]
theorem
OpenNormalAddSubgroup.mem_comap
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{N : Type u_2}
[AddGroup N]
[TopologicalSpace N]
{H : OpenNormalAddSubgroup N}
{f : G →+ N}
{hf : Continuous ⇑f}
{x : G}
:
theorem
OpenNormalSubgroup.comap_comap
{G : Type u_1}
[Group G]
[TopologicalSpace G]
{N : Type u_2}
[Group N]
[TopologicalSpace N]
{P : Type u_3}
[Group P]
[TopologicalSpace P]
(K : OpenNormalSubgroup P)
(f₂ : N →* P)
(hf₂ : Continuous ⇑f₂)
(f₁ : G →* N)
(hf₁ : Continuous ⇑f₁)
:
theorem
OpenNormalAddSubgroup.comap_comap
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
{N : Type u_2}
[AddGroup N]
[TopologicalSpace N]
{P : Type u_3}
[AddGroup P]
[TopologicalSpace P]
(K : OpenNormalAddSubgroup P)
(f₂ : N →+ P)
(hf₂ : Continuous ⇑f₂)
(f₁ : G →+ N)
(hf₁ : Continuous ⇑f₁)
: