Lemmas for IsBoundedSMul
over normed additive groups #
Lemmas which hold only in NormedSpace α β
are provided in another file.
Notably we prove that NonUnitalSeminormedRing
s have bounded actions by left- and right-
multiplication. This allows downstream files to write general results about IsBoundedSMul
, and
then deduce const_mul
and mul_const
results as an immediate corollary.
theorem
norm_smul_le
{α : Type u_1}
{β : Type u_2}
[SeminormedAddGroup α]
[SeminormedAddGroup β]
[SMulZeroClass α β]
[IsBoundedSMul α β]
(r : α)
(x : β)
:
theorem
nnnorm_smul_le
{α : Type u_1}
{β : Type u_2}
[SeminormedAddGroup α]
[SeminormedAddGroup β]
[SMulZeroClass α β]
[IsBoundedSMul α β]
(r : α)
(x : β)
:
theorem
enorm_smul_le
{α : Type u_1}
{β : Type u_2}
[SeminormedAddGroup α]
[SeminormedAddGroup β]
[SMulZeroClass α β]
[IsBoundedSMul α β]
{r : α}
{x : β}
:
theorem
dist_smul_le
{α : Type u_1}
{β : Type u_2}
[SeminormedAddGroup α]
[SeminormedAddGroup β]
[SMulZeroClass α β]
[IsBoundedSMul α β]
(s : α)
(x y : β)
:
theorem
nndist_smul_le
{α : Type u_1}
{β : Type u_2}
[SeminormedAddGroup α]
[SeminormedAddGroup β]
[SMulZeroClass α β]
[IsBoundedSMul α β]
(s : α)
(x y : β)
:
theorem
lipschitzWith_smul
{α : Type u_1}
{β : Type u_2}
[SeminormedAddGroup α]
[SeminormedAddGroup β]
[SMulZeroClass α β]
[IsBoundedSMul α β]
(s : α)
:
LipschitzWith ‖s‖₊ fun (x : β) => s • x
theorem
edist_smul_le
{α : Type u_1}
{β : Type u_2}
[SeminormedAddGroup α]
[SeminormedAddGroup β]
[SMulZeroClass α β]
[IsBoundedSMul α β]
(s : α)
(x y : β)
:
instance
NonUnitalSeminormedRing.isBoundedSMul
{α : Type u_1}
[NonUnitalSeminormedRing α]
:
IsBoundedSMul α α
Left multiplication is bounded.
instance
NonUnitalSeminormedRing.isBoundedSMulOpposite
{α : Type u_1}
[NonUnitalSeminormedRing α]
:
IsBoundedSMul αᵐᵒᵖ α
Right multiplication is bounded.
theorem
IsBoundedSMul.of_norm_smul_le
{α : Type u_1}
{β : Type u_2}
[SeminormedRing α]
[SeminormedAddCommGroup β]
[Module α β]
(h : ∀ (r : α) (x : β), ‖r • x‖ ≤ ‖r‖ * ‖x‖)
:
IsBoundedSMul α β
@[deprecated IsBoundedSMul.of_norm_smul_le (since := "2025-03-10")]
theorem
BoundedSMul.of_norm_smul_le
{α : Type u_1}
{β : Type u_2}
[SeminormedRing α]
[SeminormedAddCommGroup β]
[Module α β]
(h : ∀ (r : α) (x : β), ‖r • x‖ ≤ ‖r‖ * ‖x‖)
:
IsBoundedSMul α β
Alias of IsBoundedSMul.of_norm_smul_le
.
theorem
IsBoundedSMul.of_nnnorm_smul_le
{α : Type u_1}
{β : Type u_2}
[SeminormedRing α]
[SeminormedAddCommGroup β]
[Module α β]
(h : ∀ (r : α) (x : β), ‖r • x‖₊ ≤ ‖r‖₊ * ‖x‖₊)
:
IsBoundedSMul α β
@[deprecated IsBoundedSMul.of_nnnorm_smul_le (since := "2025-03-10")]
theorem
BoundedSMul.of_nnnorm_smul_le
{α : Type u_1}
{β : Type u_2}
[SeminormedRing α]
[SeminormedAddCommGroup β]
[Module α β]
(h : ∀ (r : α) (x : β), ‖r • x‖₊ ≤ ‖r‖₊ * ‖x‖₊)
:
IsBoundedSMul α β
Alias of IsBoundedSMul.of_nnnorm_smul_le
.
@[instance 100]
instance
NormMulClass.toNormSMulClass
{α : Type u_1}
[Norm α]
[Mul α]
[NormMulClass α]
:
NormSMulClass α α
@[instance 100]
instance
NormMulClass.toNormSMulClass_op
{α : Type u_1}
[SeminormedRing α]
[NormMulClass α]
:
NormSMulClass αᵐᵒᵖ α
theorem
nnnorm_smul
{α : Type u_1}
{β : Type u_2}
[SeminormedRing α]
[SeminormedAddGroup β]
[SMul α β]
[NormSMulClass α β]
(r : α)
(x : β)
:
theorem
enorm_smul
{α : Type u_1}
{β : Type u_2}
[SeminormedRing α]
[SeminormedAddGroup β]
[SMul α β]
[NormSMulClass α β]
(r : α)
(x : β)
:
instance
Pi.instNormSMulClass
{α : Type u_1}
{ι : Type u_3}
{β : ι → Type u_4}
[Fintype ι]
[SeminormedRing α]
[(i : ι) → SeminormedAddGroup (β i)]
[(i : ι) → SMul α (β i)]
[∀ (i : ι), NormSMulClass α (β i)]
:
NormSMulClass α ((i : ι) → β i)
instance
Prod.instNormSMulClass
{α : Type u_1}
{β : Type u_2}
[SeminormedRing α]
[SeminormedAddGroup β]
[SMul α β]
[NormSMulClass α β]
{γ : Type u_3}
[SeminormedAddGroup γ]
[SMul α γ]
[NormSMulClass α γ]
:
NormSMulClass α (β × γ)
instance
ULift.instNormSMulClass
{α : Type u_1}
{β : Type u_2}
[SeminormedRing α]
[SeminormedAddGroup β]
[SMul α β]
[NormSMulClass α β]
:
theorem
dist_smul₀
{α : Type u_1}
{β : Type u_2}
[SeminormedRing α]
[SeminormedAddCommGroup β]
[Module α β]
[NormSMulClass α β]
(s : α)
(x y : β)
:
theorem
nndist_smul₀
{α : Type u_1}
{β : Type u_2}
[SeminormedRing α]
[SeminormedAddCommGroup β]
[Module α β]
[NormSMulClass α β]
(s : α)
(x y : β)
:
theorem
edist_smul₀
{α : Type u_1}
{β : Type u_2}
[SeminormedRing α]
[SeminormedAddCommGroup β]
[Module α β]
[NormSMulClass α β]
(s : α)
(x y : β)
:
instance
NormSMulClass.toIsBoundedSMul
{α : Type u_1}
{β : Type u_2}
[SeminormedRing α]
[SeminormedAddCommGroup β]
[Module α β]
[NormSMulClass α β]
:
IsBoundedSMul α β
theorem
NormedDivisionRing.toNormSMulClass
{α : Type u_1}
{β : Type u_2}
[NormedDivisionRing α]
[SeminormedAddGroup β]
[MulActionWithZero α β]
[IsBoundedSMul α β]
:
NormSMulClass α β
For a normed division ring, a sub-multiplicative norm is actually strictly multiplicative.
This is not an instance as it forms a loop with NormSMulClass.toIsBoundedSMul
.