Documentation

Mathlib.Analysis.SpecialFunctions.PolarCoord

Polar coordinates #

We define polar coordinates, as a partial homeomorphism in ℝ^2 between ℝ^2 - (-∞, 0] and (0, +∞) × (-π, π). Its inverse is given by (r, θ) ↦ (r cos θ, r sin θ).

It satisfies the following change of variables formula (see integral_comp_polarCoord_symm): ∫ p in polarCoord.target, p.1 • f (polarCoord.symm p) = ∫ p, f p

The polar coordinates partial homeomorphism in ℝ^2, mapping (r cos θ, r sin θ) to (r, θ). It is a homeomorphism between ℝ^2 - (-∞, 0] and (0, +∞) × (-π, π).

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem polarCoord_apply (q : × ) :
    @[simp]
    theorem polarCoord_symm_apply (p : × ) :
    polarCoord.symm p = (p.1 * Real.cos p.2, p.1 * Real.sin p.2)
    @[simp]

    The derivative of polarCoord.symm, see hasFDerivAt_polarCoord_symm.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The polar coordinates partial homeomorphism in , mapping r (cos θ + I * sin θ) to (r, θ). It is a homeomorphism between ℂ - ℝ≤0 and (0, +∞) × (-π, π).

      Equations
      Instances For
        @[simp]
        theorem Complex.polarCoord_symm_apply (p : × ) :
        Complex.polarCoord.symm p = p.1 * ((Real.cos p.2) + (Real.sin p.2) * I)
        @[deprecated Complex.norm_polarCoord_symm (since := "2025-02-17")]

        Alias of Complex.norm_polarCoord_symm.

        noncomputable def fderivPiPolarCoordSymm {ι : Type u_1} (p : ι × ) :
        (ι × ) →L[] ι ×

        The derivative of polarCoord.symm on ι → ℝ × ℝ, see hasFDerivAt_pi_polarCoord_symm.

        Equations
        Instances For
          theorem injOn_pi_polarCoord_symm {ι : Type u_1} :
          Set.InjOn (fun (p : ι × ) (i : ι) => polarCoord.symm (p i)) (Set.univ.pi fun (x : ι) => polarCoord.target)
          theorem abs_fst_of_mem_pi_polarCoord_target {ι : Type u_1} {p : ι × } (hp : p Set.univ.pi fun (x : ι) => polarCoord.target) (i : ι) :
          |(p i).1| = (p i).1
          theorem hasFDerivAt_pi_polarCoord_symm {ι : Type u_1} [Fintype ι] (p : ι × ) :
          HasFDerivAt (fun (x : ι × ) (i : ι) => polarCoord.symm (x i)) (fderivPiPolarCoordSymm p) p
          theorem det_fderivPiPolarCoordSymm {ι : Type u_1} [Fintype ι] (p : ι × ) :
          (fderivPiPolarCoordSymm p).det = i : ι, (p i).1
          theorem integral_comp_pi_polarCoord_symm {ι : Type u_1} [Fintype ι] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] (f : (ι × )E) :
          ( (p : ι × ) in Set.univ.pi fun (x : ι) => polarCoord.target, (∏ i : ι, (p i).1) f fun (i : ι) => polarCoord.symm (p i)) = (p : ι × ), f p
          theorem Complex.integral_comp_pi_polarCoord_symm {ι : Type u_1} [Fintype ι] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] (f : (ι)E) :
          ( (p : ι × ) in Set.univ.pi fun (x : ι) => Complex.polarCoord.target, (∏ i : ι, (p i).1) f fun (i : ι) => Complex.polarCoord.symm (p i)) = (p : ι), f p
          theorem lintegral_comp_pi_polarCoord_symm {ι : Type u_1} [Fintype ι] (f : (ι × )ENNReal) :
          (∫⁻ (p : ι × ) in Set.univ.pi fun (x : ι) => polarCoord.target, (∏ i : ι, ENNReal.ofReal (p i).1) * f fun (i : ι) => polarCoord.symm (p i)) = ∫⁻ (p : ι × ), f p
          theorem Complex.lintegral_comp_pi_polarCoord_symm {ι : Type u_1} [Fintype ι] (f : (ι)ENNReal) :
          (∫⁻ (p : ι × ) in Set.univ.pi fun (x : ι) => Complex.polarCoord.target, (∏ i : ι, ENNReal.ofReal (p i).1) * f fun (i : ι) => Complex.polarCoord.symm (p i)) = ∫⁻ (p : ι), f p