Documentation

Mathlib.CategoryTheory.Functor.Const

The constant functor #

const J : C ℤ (J ℤ C) is the functor that sends an object X : C to the functor J ℤ C sending every object in J to X, and every morphism to šŸ™ X.

When J is nonempty, const is faithful.

We have (const J).obj X ā‹™ F ≅ (const J).obj (F.obj X) for any F : C ℤ D.

The functor sending X : C to the constant functor J ℤ C sending everything to X.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.const_obj_obj (J : Type u₁) [Category.{v₁, u₁} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] (X : C) (xāœ : J) :
((const J).obj X).obj xāœ = X
@[simp]
theorem CategoryTheory.Functor.const_obj_map (J : Type u₁) [Category.{v₁, u₁} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] (X : C) {Xāœ Yāœ : J} (xāœ : Xāœ ⟶ Yāœ) :
((const J).obj X).map xāœ = CategoryStruct.id X
@[simp]
theorem CategoryTheory.Functor.const_map_app (J : Type u₁) [Category.{v₁, u₁} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {Xāœ Yāœ : C} (f : Xāœ ⟶ Yāœ) (xāœ : J) :
((const J).map f).app xāœ = f

The constant functor Jįµ’įµ– ℤ Cįµ’įµ– sending everything to op X is (naturally isomorphic to) the opposite of the constant functor J ℤ C sending everything to X.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.const.opObjOp_inv_app {J : Type u₁} [Category.{v₁, u₁} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] (X : C) (xāœ : Jįµ’įµ–) :
(opObjOp X).inv.app xāœ = CategoryStruct.id (((const J).obj X).op.obj xāœ)

The constant functor Jįµ’įµ– ℤ C sending everything to unop X is (naturally isomorphic to) the opposite of the constant functor J ℤ Cįµ’įµ– sending everything to X.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.const.unop_functor_op_obj_map {J : Type u₁} [Category.{v₁, u₁} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] (X : Cįµ’įµ–) {j₁ jā‚‚ : J} (f : j₁ ⟶ jā‚‚) :
def CategoryTheory.Functor.constComp (J : Type u₁) [Category.{v₁, u₁} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {D : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D] (X : C) (F : Functor C D) :
((const J).obj X).comp F ≅ (const J).obj (F.obj X)

These are actually equal, of course, but not definitionally equal (the equality requires F.map (šŸ™ _) = šŸ™ _). A natural isomorphism is more convenient than an equality between functors (compare id_to_iso).

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.constComp_hom_app (J : Type u₁) [Category.{v₁, u₁} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {D : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D] (X : C) (F : Functor C D) (xāœ : J) :
(constComp J X F).hom.app xāœ = CategoryStruct.id ((((const J).obj X).comp F).obj xāœ)
@[simp]
theorem CategoryTheory.Functor.constComp_inv_app (J : Type u₁) [Category.{v₁, u₁} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {D : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D] (X : C) (F : Functor C D) (xāœ : J) :
(constComp J X F).inv.app xāœ = CategoryStruct.id (((const J).obj (F.obj X)).obj xāœ)

If J is nonempty, then the constant functor over J is faithful.

The canonical isomorphism F ā‹™ Functor.const J ≅ Functor.const F ā‹™ (whiskeringRight J _ _).obj L.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.compConstIso_hom_app_app (J : Type u₁) [Category.{v₁, u₁} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {D : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D] (F : Functor C D) (X : C) (Xāœ : J) :
((compConstIso J F).hom.app X).app Xāœ = CategoryStruct.id (F.obj X)
@[simp]
theorem CategoryTheory.Functor.compConstIso_inv_app_app (J : Type u₁) [Category.{v₁, u₁} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {D : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D] (F : Functor C D) (X : C) (Xāœ : J) :
((compConstIso J F).inv.app X).app Xāœ = CategoryStruct.id (F.obj X)

The canonical isomorphism const D ā‹™ (whiskeringLeft J _ _).obj F ≅ const J

Equations
  • One or more equations did not get rendered due to their size.