Documentation

Mathlib.MeasureTheory.Measure.Decomposition.Hahn

Unsigned Hahn decomposition theorem #

This file proves the unsigned version of the Hahn decomposition theorem.

Main definitions #

Main statements #

Tags #

Hahn decomposition

theorem MeasureTheory.hahn_decomposition {α : Type u_1} { : MeasurableSpace α} (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
∃ (s : Set α), MeasurableSet s (∀ (t : Set α), MeasurableSet tt sν t μ t) ∀ (t : Set α), MeasurableSet tt sμ t ν t

Hahn decomposition theorem

structure MeasureTheory.IsHahnDecomposition {α : Type u_1} { : MeasurableSpace α} (μ ν : Measure α) (s : Set α) :

A set where μ ≤ ν (and the reverse inequality on the complement), defined via measurable set and measure restriction comparisons.

Instances For
    theorem MeasureTheory.IsHahnDecomposition.compl {α : Type u_1} { : MeasurableSpace α} {μ ν : Measure α} {s : Set α} (h : IsHahnDecomposition μ ν s) :
    theorem MeasureTheory.exists_isHahnDecomposition {α : Type u_1} { : MeasurableSpace α} (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
    ∃ (s : Set α), IsHahnDecomposition μ ν s