Finiteness results on filter bases #
A filter basis B : FilterBasis α
on a type α
is a nonempty collection of sets of α
such that the intersection of two elements of this collection contains some element of
the collection.
@[deprecated Filter.HasBasis.iInf' (since := "2025-05-05")]
theorem
Filter.hasBasis_iInf'
{α : Type u_1}
{ι : Type u_6}
{ι' : ι → Type u_7}
{l : ι → Filter α}
{p : (i : ι) → ι' i → Prop}
{s : (i : ι) → ι' i → Set α}
(hl : ∀ (i : ι), (l i).HasBasis (p i) (s i))
:
Alias of Filter.HasBasis.iInf'
.
@[deprecated Filter.HasBasis.iInf (since := "2025-05-05")]
theorem
Filter.hasBasis_iInf
{α : Type u_1}
{ι : Type u_6}
{ι' : ι → Type u_7}
{l : ι → Filter α}
{p : (i : ι) → ι' i → Prop}
{s : (i : ι) → ι' i → Set α}
(hl : ∀ (i : ι), (l i).HasBasis (p i) (s i))
:
Alias of Filter.HasBasis.iInf
.
theorem
Pairwise.exists_mem_filter_basis_of_disjoint
{α : Type u_1}
{I : Type u_7}
[Finite I]
{l : I → Filter α}
{ι : I → Sort u_6}
{p : (i : I) → ι i → Prop}
{s : (i : I) → ι i → Set α}
(hd : Pairwise (Function.onFun Disjoint l))
(h : ∀ (i : I), (l i).HasBasis (p i) (s i))
:
∃ (ind : (i : I) → ι i), (∀ (i : I), p i (ind i)) ∧ Pairwise (Function.onFun Disjoint fun (i : I) => s i (ind i))
theorem
Set.PairwiseDisjoint.exists_mem_filter_basis
{α : Type u_1}
{I : Type u_6}
{l : I → Filter α}
{ι : I → Sort u_7}
{p : (i : I) → ι i → Prop}
{s : (i : I) → ι i → Set α}
{S : Set I}
(hd : S.PairwiseDisjoint l)
(hS : S.Finite)
(h : ∀ (i : I), (l i).HasBasis (p i) (s i))
:
∃ (ind : (i : I) → ι i), (∀ (i : I), p i (ind i)) ∧ S.PairwiseDisjoint fun (i : I) => s i (ind i)
If s : ι → Set α
is an indexed family of sets, then finite intersections of s i
form a basis
of ⨅ i, 𝓟 (s i)
.