Documentation

Mathlib.RingTheory.PowerSeries.Basic

Formal power series (in one variable) #

This file defines (univariate) formal power series and develops the basic properties of these objects.

A formal power series is to a polynomial like an infinite sum is to a finite sum.

Formal power series in one variable are defined from multivariate power series as PowerSeries R := MvPowerSeries Unit R.

The file sets up the (semi)ring structure on univariate power series.

We provide the natural inclusion from polynomials to formal power series.

Additional results can be found in:

Implementation notes #

Because of its definition, PowerSeries R := MvPowerSeries Unit R. a lot of proofs and properties from the multivariate case can be ported to the single variable case. However, it means that formal power series are indexed by Unit →₀ ℕ, which is of course canonically isomorphic to . We then build some glue to treat formal power series as if they were indexed by . Occasionally this leads to proofs that are uglier than expected.

@[reducible, inline]
abbrev PowerSeries (R : Type u_1) :
Type u_1

Formal power series over a coefficient type R

Equations

R⟦X⟧ is notation for PowerSeries R, the semiring of formal power series in one variable over a semiring R.

Equations
instance PowerSeries.instIsScalarTower {R : Type u_1} {A : Type u_2} {S : Type u_3} [Semiring R] [Semiring S] [AddCommMonoid A] [Module R A] [Module S A] [SMul R S] [IsScalarTower R S A] :
def PowerSeries.coeff (R : Type u_1) [Semiring R] (n : ) :

The nth coefficient of a formal power series.

Equations

The nth monomial with coefficient a as formal power series.

Equations
theorem PowerSeries.coeff_def {R : Type u_1} [Semiring R] {s : Unit →₀ } {n : } (h : s () = n) :
theorem PowerSeries.ext {R : Type u_1} [Semiring R] {φ ψ : PowerSeries R} (h : ∀ (n : ), (coeff R n) φ = (coeff R n) ψ) :
φ = ψ

Two formal power series are equal if all their coefficients are equal.

theorem PowerSeries.ext_iff {R : Type u_1} [Semiring R] {φ ψ : PowerSeries R} :
φ = ψ ∀ (n : ), (coeff R n) φ = (coeff R n) ψ

Two formal power series are equal if all their coefficients are equal.

@[simp]
theorem PowerSeries.forall_coeff_eq_zero {R : Type u_1} [Semiring R] (φ : PowerSeries R) :
(∀ (n : ), (coeff R n) φ = 0) φ = 0
def PowerSeries.mk {R : Type u_2} (f : R) :

Constructor for formal power series.

Equations
@[simp]
theorem PowerSeries.coeff_mk {R : Type u_1} [Semiring R] (n : ) (f : R) :
(coeff R n) (mk f) = f n
theorem PowerSeries.coeff_monomial {R : Type u_1} [Semiring R] (m n : ) (a : R) :
(coeff R m) ((monomial R n) a) = if m = n then a else 0
theorem PowerSeries.monomial_eq_mk {R : Type u_1} [Semiring R] (n : ) (a : R) :
(monomial R n) a = mk fun (m : ) => if m = n then a else 0
@[simp]
theorem PowerSeries.coeff_monomial_same {R : Type u_1} [Semiring R] (n : ) (a : R) :
(coeff R n) ((monomial R n) a) = a

The constant coefficient of a formal power series.

Equations

The constant formal power series.

Equations
def PowerSeries.X {R : Type u_1} [Semiring R] :

The variable of the formal power series ring.

Equations
theorem PowerSeries.commute_X {R : Type u_1} [Semiring R] (φ : PowerSeries R) :
theorem PowerSeries.X_mul {R : Type u_1} [Semiring R] {φ : PowerSeries R} :
X * φ = φ * X
theorem PowerSeries.commute_X_pow {R : Type u_1} [Semiring R] (φ : PowerSeries R) (n : ) :
Commute φ (X ^ n)
theorem PowerSeries.X_pow_mul {R : Type u_1} [Semiring R] {φ : PowerSeries R} {n : } :
X ^ n * φ = φ * X ^ n
@[simp]
@[simp]
theorem PowerSeries.monomial_zero_eq_C {R : Type u_1} [Semiring R] :
(monomial R 0) = (C R)
theorem PowerSeries.monomial_zero_eq_C_apply {R : Type u_1} [Semiring R] (a : R) :
(monomial R 0) a = (C R) a
theorem PowerSeries.coeff_C {R : Type u_1} [Semiring R] (n : ) (a : R) :
(coeff R n) ((C R) a) = if n = 0 then a else 0
@[simp]
theorem PowerSeries.coeff_zero_C {R : Type u_1} [Semiring R] (a : R) :
(coeff R 0) ((C R) a) = a
theorem PowerSeries.coeff_ne_zero_C {R : Type u_1} [Semiring R] {a : R} {n : } (h : n 0) :
(coeff R n) ((C R) a) = 0
@[simp]
theorem PowerSeries.coeff_succ_C {R : Type u_1} [Semiring R] {a : R} {n : } :
(coeff R (n + 1)) ((C R) a) = 0
theorem PowerSeries.X_eq {R : Type u_1} [Semiring R] :
X = (monomial R 1) 1
theorem PowerSeries.coeff_X {R : Type u_1} [Semiring R] (n : ) :
(coeff R n) X = if n = 1 then 1 else 0
@[simp]
theorem PowerSeries.coeff_zero_X {R : Type u_1} [Semiring R] :
(coeff R 0) X = 0
@[simp]
theorem PowerSeries.coeff_one_X {R : Type u_1} [Semiring R] :
(coeff R 1) X = 1
@[simp]
theorem PowerSeries.X_ne_zero {R : Type u_1} [Semiring R] [Nontrivial R] :
X 0
theorem PowerSeries.X_pow_eq {R : Type u_1} [Semiring R] (n : ) :
X ^ n = (monomial R n) 1
theorem PowerSeries.coeff_X_pow {R : Type u_1} [Semiring R] (m n : ) :
(coeff R m) (X ^ n) = if m = n then 1 else 0
@[simp]
theorem PowerSeries.coeff_X_pow_self {R : Type u_1} [Semiring R] (n : ) :
(coeff R n) (X ^ n) = 1
@[simp]
theorem PowerSeries.coeff_one {R : Type u_1} [Semiring R] (n : ) :
(coeff R n) 1 = if n = 0 then 1 else 0
theorem PowerSeries.coeff_zero_one {R : Type u_1} [Semiring R] :
(coeff R 0) 1 = 1
theorem PowerSeries.coeff_mul {R : Type u_1} [Semiring R] (n : ) (φ ψ : PowerSeries R) :
(coeff R n) (φ * ψ) = pFinset.antidiagonal n, (coeff R p.1) φ * (coeff R p.2) ψ
@[simp]
theorem PowerSeries.coeff_mul_C {R : Type u_1} [Semiring R] (n : ) (φ : PowerSeries R) (a : R) :
(coeff R n) (φ * (C R) a) = (coeff R n) φ * a
@[simp]
theorem PowerSeries.coeff_C_mul {R : Type u_1} [Semiring R] (n : ) (φ : PowerSeries R) (a : R) :
(coeff R n) ((C R) a * φ) = a * (coeff R n) φ
@[simp]
theorem PowerSeries.coeff_smul {R : Type u_1} [Semiring R] {S : Type u_2} [Semiring S] [Module R S] (n : ) (φ : PowerSeries S) (a : R) :
(coeff S n) (a φ) = a (coeff S n) φ
@[simp]
theorem PowerSeries.constantCoeff_smul {R : Type u_1} [Semiring R] {S : Type u_2} [Semiring S] [Module R S] (φ : PowerSeries S) (a : R) :
(constantCoeff S) (a φ) = a (constantCoeff S) φ
theorem PowerSeries.smul_eq_C_mul {R : Type u_1} [Semiring R] (f : PowerSeries R) (a : R) :
a f = (C R) a * f
@[simp]
theorem PowerSeries.coeff_succ_mul_X {R : Type u_1} [Semiring R] (n : ) (φ : PowerSeries R) :
(coeff R (n + 1)) (φ * X) = (coeff R n) φ
@[simp]
theorem PowerSeries.coeff_succ_X_mul {R : Type u_1} [Semiring R] (n : ) (φ : PowerSeries R) :
(coeff R (n + 1)) (X * φ) = (coeff R n) φ
theorem PowerSeries.mul_X_cancel {R : Type u_1} [Semiring R] {φ ψ : PowerSeries R} (h : φ * X = ψ * X) :
φ = ψ
theorem PowerSeries.mul_X_inj {R : Type u_1} [Semiring R] {φ ψ : PowerSeries R} :
φ * X = ψ * X φ = ψ
theorem PowerSeries.X_mul_cancel {R : Type u_1} [Semiring R] {φ ψ : PowerSeries R} (h : X * φ = X * ψ) :
φ = ψ
theorem PowerSeries.X_mul_inj {R : Type u_1} [Semiring R] {φ ψ : PowerSeries R} :
X * φ = X * ψ φ = ψ
@[simp]
theorem PowerSeries.constantCoeff_C {R : Type u_1} [Semiring R] (a : R) :
(constantCoeff R) ((C R) a) = a
@[simp]
@[simp]
@[simp]
@[simp]
theorem PowerSeries.constantCoeff_mk {R : Type u_1} [Semiring R] {f : R} :
(constantCoeff R) (mk f) = f 0
theorem PowerSeries.coeff_zero_mul_X {R : Type u_1} [Semiring R] (φ : PowerSeries R) :
(coeff R 0) (φ * X) = 0
theorem PowerSeries.coeff_zero_X_mul {R : Type u_1} [Semiring R] (φ : PowerSeries R) :
(coeff R 0) (X * φ) = 0
theorem PowerSeries.coeff_C_mul_X_pow {R : Type u_1} [Semiring R] (x : R) (k n : ) :
(coeff R n) ((C R) x * X ^ k) = if n = k then x else 0
@[simp]
theorem PowerSeries.coeff_mul_X_pow {R : Type u_1} [Semiring R] (p : PowerSeries R) (n d : ) :
(coeff R (d + n)) (p * X ^ n) = (coeff R d) p
@[simp]
theorem PowerSeries.coeff_X_pow_mul {R : Type u_1} [Semiring R] (p : PowerSeries R) (n d : ) :
(coeff R (d + n)) (X ^ n * p) = (coeff R d) p
theorem PowerSeries.mul_X_pow_cancel {R : Type u_1} [Semiring R] {k : } {φ ψ : PowerSeries R} (h : φ * X ^ k = ψ * X ^ k) :
φ = ψ
theorem PowerSeries.mul_X_pow_injective {R : Type u_1} [Semiring R] {k : } :
Function.Injective fun (x : PowerSeries R) => x * X ^ k
theorem PowerSeries.mul_X_pow_inj {R : Type u_1} [Semiring R] {k : } {φ ψ : PowerSeries R} :
φ * X ^ k = ψ * X ^ k φ = ψ
theorem PowerSeries.X_pow_mul_cancel {R : Type u_1} [Semiring R] {k : } {φ ψ : PowerSeries R} (h : X ^ k * φ = X ^ k * ψ) :
φ = ψ
theorem PowerSeries.X_pow_mul_injective {R : Type u_1} [Semiring R] {k : } :
Function.Injective fun (x : PowerSeries R) => X ^ k * x
theorem PowerSeries.X_pow_mul_inj {R : Type u_1} [Semiring R] {k : } {φ ψ : PowerSeries R} :
X ^ k * φ = X ^ k * ψ φ = ψ
theorem PowerSeries.coeff_mul_X_pow' {R : Type u_1} [Semiring R] (p : PowerSeries R) (n d : ) :
(coeff R d) (p * X ^ n) = if n d then (coeff R (d - n)) p else 0
theorem PowerSeries.coeff_X_pow_mul' {R : Type u_1} [Semiring R] (p : PowerSeries R) (n d : ) :
(coeff R d) (X ^ n * p) = if n d then (coeff R (d - n)) p else 0
theorem PowerSeries.isUnit_constantCoeff {R : Type u_1} [Semiring R] (φ : PowerSeries R) (h : IsUnit φ) :

If a formal power series is invertible, then so is its constant coefficient.

theorem PowerSeries.eq_shift_mul_X_add_const {R : Type u_1} [Semiring R] (φ : PowerSeries R) :
φ = (mk fun (p : ) => (coeff R (p + 1)) φ) * X + (C R) ((constantCoeff R) φ)

Split off the constant coefficient.

theorem PowerSeries.eq_X_mul_shift_add_const {R : Type u_1} [Semiring R] (φ : PowerSeries R) :
φ = (X * mk fun (p : ) => (coeff R (p + 1)) φ) + (C R) ((constantCoeff R) φ)

Split off the constant coefficient.

def PowerSeries.map {R : Type u_1} [Semiring R] {S : Type u_2} [Semiring S] (f : R →+* S) :

The map between formal power series induced by a map on the coefficients.

Equations
@[simp]
theorem PowerSeries.map_id {R : Type u_1} [Semiring R] :
(map (RingHom.id R)) = id
theorem PowerSeries.map_comp {R : Type u_1} [Semiring R] {S : Type u_2} {T : Type u_3} [Semiring S] [Semiring T] (f : R →+* S) (g : S →+* T) :
map (g.comp f) = (map g).comp (map f)
@[simp]
theorem PowerSeries.coeff_map {R : Type u_1} [Semiring R] {S : Type u_2} [Semiring S] (f : R →+* S) (n : ) (φ : PowerSeries R) :
(coeff S n) ((map f) φ) = f ((coeff R n) φ)
@[simp]
theorem PowerSeries.map_C {R : Type u_1} [Semiring R] {S : Type u_2} [Semiring S] (f : R →+* S) (r : R) :
(map f) ((C R) r) = (C S) (f r)
@[simp]
theorem PowerSeries.map_X {R : Type u_1} [Semiring R] {S : Type u_2} [Semiring S] (f : R →+* S) :
(map f) X = X
theorem PowerSeries.map_surjective {S : Type u_2} {T : Type u_3} [Semiring S] [Semiring T] (f : S →+* T) (hf : Function.Surjective f) :
theorem PowerSeries.map_injective {S : Type u_2} {T : Type u_3} [Semiring S] [Semiring T] (f : S →+* T) (hf : Function.Injective f) :
@[simp]
theorem PowerSeries.map_eq_zero {R : Type u_2} {S : Type u_3} [DivisionSemiring R] [Semiring S] [Nontrivial S] (φ : PowerSeries R) (f : R →+* S) :
(map f) φ = 0 φ = 0
theorem PowerSeries.X_pow_dvd_iff {R : Type u_1} [Semiring R] {n : } {φ : PowerSeries R} :
X ^ n φ m < n, (coeff R m) φ = 0
theorem PowerSeries.X_dvd_iff {R : Type u_1} [Semiring R] {φ : PowerSeries R} :
X φ (constantCoeff R) φ = 0
noncomputable def PowerSeries.rescale {R : Type u_1} [CommSemiring R] (a : R) :

The ring homomorphism taking a power series f(X) to f(aX).

Equations
@[simp]
theorem PowerSeries.coeff_rescale {R : Type u_1} [CommSemiring R] (f : PowerSeries R) (a : R) (n : ) :
(coeff R n) ((rescale a) f) = a ^ n * (coeff R n) f
@[simp]
theorem PowerSeries.rescale_mk {R : Type u_1} [CommSemiring R] (f : R) (a : R) :
(rescale a) (mk f) = mk fun (n : ) => a ^ n * f n
theorem PowerSeries.rescale_rescale {R : Type u_1} [CommSemiring R] (f : PowerSeries R) (a b : R) :
(rescale b) ((rescale a) f) = (rescale (a * b)) f
theorem PowerSeries.rescale_mul {R : Type u_1} [CommSemiring R] (a b : R) :
rescale (a * b) = (rescale b).comp (rescale a)
theorem PowerSeries.coeff_prod {R : Type u_2} [CommSemiring R] {ι : Type u_3} [DecidableEq ι] (f : ιPowerSeries R) (d : ) (s : Finset ι) :
(coeff R d) (∏ js, f j) = ls.finsuppAntidiag d, is, (coeff R (l i)) (f i)

Coefficients of a product of power series

theorem PowerSeries.coeff_pow {R : Type u_2} [CommSemiring R] (k n : ) (φ : PowerSeries R) :
(coeff R n) (φ ^ k) = l(Finset.range k).finsuppAntidiag n, iFinset.range k, (coeff R (l i)) φ

The n-th coefficient of the k-th power of a power series.

theorem PowerSeries.coeff_one_mul {R : Type u_2} [CommSemiring R] (φ ψ : PowerSeries R) :
(coeff R 1) (φ * ψ) = (coeff R 1) φ * (constantCoeff R) ψ + (coeff R 1) ψ * (constantCoeff R) φ

First coefficient of the product of two power series.

theorem PowerSeries.coeff_one_pow {R : Type u_2} [CommSemiring R] (n : ) (φ : PowerSeries R) :
(coeff R 1) (φ ^ n) = n * (coeff R 1) φ * (constantCoeff R) φ ^ (n - 1)

First coefficient of the n-th power of a power series.

@[simp]
theorem PowerSeries.rescale_X {A : Type u_2} [CommRing A] (a : A) :
(rescale a) X = (C A) a * X
noncomputable def PowerSeries.evalNegHom {A : Type u_2} [CommRing A] :

The ring homomorphism taking a power series f(X) to f(-X).

Equations
theorem PowerSeries.C_eq_algebraMap {R : Type u_1} [CommSemiring R] {r : R} :
(C R) r = (algebraMap R (PowerSeries R)) r
theorem PowerSeries.algebraMap_apply {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] {r : R} :
(algebraMap R (PowerSeries A)) r = (C A) ((algebraMap R A) r)
def PowerSeries.mapAlgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (φ : A →ₐ[R] B) :

Change of coefficients in power series, as an AlgHom

Equations
theorem PowerSeries.mapAlgHom_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (φ : A →ₐ[R] B) (f : PowerSeries A) :
(mapAlgHom φ) f = (map φ) f

The natural inclusion from polynomials into formal power series.

Equations
@[deprecated Polynomial.toPowerSeries (since := "2024-10-27")]

Alias of Polynomial.toPowerSeries.


The natural inclusion from polynomials into formal power series.

Equations

The natural inclusion from polynomials into formal power series.

Equations
theorem Polynomial.coe_def {R : Type u_1} [Semiring R] (φ : Polynomial R) :
@[simp]
theorem Polynomial.coeff_coe {R : Type u_1} [Semiring R] (φ : Polynomial R) (n : ) :
(PowerSeries.coeff R n) φ = φ.coeff n
@[simp]
theorem Polynomial.coe_monomial {R : Type u_1} [Semiring R] (n : ) (a : R) :
((monomial n) a) = (PowerSeries.monomial R n) a
@[simp]
theorem Polynomial.coe_zero {R : Type u_1} [Semiring R] :
0 = 0
@[simp]
theorem Polynomial.coe_one {R : Type u_1} [Semiring R] :
1 = 1
@[simp]
theorem Polynomial.coe_add {R : Type u_1} [Semiring R] (φ ψ : Polynomial R) :
↑(φ + ψ) = φ + ψ
@[simp]
theorem Polynomial.coe_mul {R : Type u_1} [Semiring R] (φ ψ : Polynomial R) :
↑(φ * ψ) = φ * ψ
@[simp]
theorem Polynomial.coe_C {R : Type u_1} [Semiring R] (a : R) :
(C a) = (PowerSeries.C R) a
@[simp]
theorem Polynomial.coe_X {R : Type u_1} [Semiring R] :
@[simp]
theorem Polynomial.polynomial_map_coe {U : Type u_2} {V : Type u_3} [CommSemiring U] [CommSemiring V] {φ : U →+* V} {f : Polynomial U} :
(map φ f) = (PowerSeries.map φ) f
@[simp]
@[simp]
theorem Polynomial.coe_inj {R : Type u_1} [Semiring R] {φ ψ : Polynomial R} :
φ = ψ φ = ψ
@[simp]
theorem Polynomial.coe_eq_zero_iff {R : Type u_1} [Semiring R] {φ : Polynomial R} :
φ = 0 φ = 0
@[simp]
theorem Polynomial.coe_eq_one_iff {R : Type u_1} [Semiring R] {φ : Polynomial R} :
φ = 1 φ = 1

The coercion from polynomials to power series as a ring homomorphism.

Equations
@[simp]
@[simp]
theorem Polynomial.coe_pow {R : Type u_1} [Semiring R] {φ : Polynomial R} (n : ) :
↑(φ ^ n) = φ ^ n

The coercion from polynomials to power series as an algebra homomorphism.

Equations
@[simp]
theorem Polynomial.coeToPowerSeries.algHom_apply {R : Type u_1} [CommSemiring R] (φ : Polynomial R) (A : Type u_2) [Semiring A] [Algebra R A] :
(algHom A) φ = (PowerSeries.map (algebraMap R A)) φ
@[simp]
theorem Polynomial.coe_neg {R : Type u_1} [CommRing R] (p : Polynomial R) :
↑(-p) = -p
@[simp]
theorem Polynomial.coe_sub {R : Type u_1} [CommRing R] (p q : Polynomial R) :
↑(p - q) = p - q
theorem PowerSeries.algebraMap_apply' {R : Type u_1} (A : Type u_2) [CommSemiring R] [CommSemiring A] [Algebra R A] (p : Polynomial R) :
(algebraMap (Polynomial R) (PowerSeries A)) p = (map (algebraMap R A)) p