Documentation

Mathlib.Topology.Sober

Sober spaces #

A quasi-sober space is a topological space where every irreducible closed subset has a generic point. A sober space is a quasi-sober space where every irreducible closed subset has a unique generic point. This is if and only if the space is T0, and thus sober spaces can be stated via [QuasiSober α] [T0Space α].

Main definition #

def IsGenericPoint {α : Type u_1} [TopologicalSpace α] (x : α) (S : Set α) :

x is a generic point of S if S is the closure of x.

Equations
theorem isGenericPoint_def {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} :
theorem IsGenericPoint.def {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (h : IsGenericPoint x S) :
theorem isGenericPoint_iff_specializes {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} :
IsGenericPoint x S ∀ (y : α), x y y S
theorem IsGenericPoint.specializes_iff_mem {α : Type u_1} [TopologicalSpace α] {x y : α} {S : Set α} (h : IsGenericPoint x S) :
x y y S
theorem IsGenericPoint.specializes {α : Type u_1} [TopologicalSpace α] {x y : α} {S : Set α} (h : IsGenericPoint x S) (h' : y S) :
x y
theorem IsGenericPoint.mem {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (h : IsGenericPoint x S) :
x S
theorem IsGenericPoint.isClosed {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (h : IsGenericPoint x S) :
theorem IsGenericPoint.isIrreducible {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (h : IsGenericPoint x S) :
theorem IsGenericPoint.inseparable {α : Type u_1} [TopologicalSpace α] {x y : α} {S : Set α} (h : IsGenericPoint x S) (h' : IsGenericPoint y S) :
theorem IsGenericPoint.eq {α : Type u_1} [TopologicalSpace α] {x y : α} {S : Set α} [T0Space α] (h : IsGenericPoint x S) (h' : IsGenericPoint y S) :
x = y

In a T₀ space, each set has at most one generic point.

theorem IsGenericPoint.mem_open_set_iff {α : Type u_1} [TopologicalSpace α] {x : α} {S U : Set α} (h : IsGenericPoint x S) (hU : IsOpen U) :
x U (S U).Nonempty
theorem IsGenericPoint.disjoint_iff {α : Type u_1} [TopologicalSpace α] {x : α} {S U : Set α} (h : IsGenericPoint x S) (hU : IsOpen U) :
Disjoint S U xU
theorem IsGenericPoint.mem_closed_set_iff {α : Type u_1} [TopologicalSpace α] {x : α} {S Z : Set α} (h : IsGenericPoint x S) (hZ : IsClosed Z) :
x Z S Z
theorem IsGenericPoint.image {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {x : α} {S : Set α} (h : IsGenericPoint x S) {f : αβ} (hf : Continuous f) :
IsGenericPoint (f x) (closure (f '' S))
theorem isGenericPoint_iff_forall_closed {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (hS : IsClosed S) (hxS : x S) :
IsGenericPoint x S ∀ (Z : Set α), IsClosed Zx ZS Z
class QuasiSober (α : Type u_3) [TopologicalSpace α] :

A space is sober if every irreducible closed subset has a generic point.

Instances
    theorem quasiSober_iff (α : Type u_3) [TopologicalSpace α] :
    QuasiSober α ∀ {S : Set α}, IsIrreducible SIsClosed S∃ (x : α), IsGenericPoint x S
    noncomputable def IsIrreducible.genericPoint {α : Type u_1} [TopologicalSpace α] [QuasiSober α] {S : Set α} (hS : IsIrreducible S) :
    α

    A generic point of the closure of an irreducible space.

    Equations
    noncomputable def genericPoint (α : Type u_1) [TopologicalSpace α] [QuasiSober α] [IrreducibleSpace α] :
    α

    A generic point of a sober irreducible space.

    Equations

    The closed irreducible subsets of a sober space bijects with the points of the space.

    Equations
    • One or more equations did not get rendered due to their size.
    theorem Topology.IsClosedEmbedding.quasiSober {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsClosedEmbedding f) [QuasiSober β] :
    theorem Topology.IsOpenEmbedding.quasiSober {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsOpenEmbedding f) [QuasiSober β] :
    theorem TopologicalSpace.IsOpenCover.quasiSober_iff_forall {α : Type u_1} [TopologicalSpace α] {ι : Type u_3} {U : ιOpens α} (hU : IsOpenCover U) :
    QuasiSober α ∀ (i : ι), QuasiSober (U i)
    theorem TopologicalSpace.IsOpenCover.quasiSober {α : Type u_1} [TopologicalSpace α] {ι : Type u_3} {U : ιOpens α} (hU : IsOpenCover U) [∀ (i : ι), QuasiSober (U i)] :
    theorem quasiSober_of_open_cover {α : Type u_1} [TopologicalSpace α] (S : Set (Set α)) (hS : ∀ (s : S), IsOpen s) [∀ (s : S), QuasiSober s] (hS' : ⋃₀ S = ) :

    A space is quasi-sober if it can be covered by open quasi-sober subsets.

    @[instance 100]
    instance T2Space.quasiSober {α : Type u_1} [TopologicalSpace α] [T2Space α] :

    Any Hausdorff space is a quasi-sober space because any irreducible set is a singleton.

    def genericPoints (α : Type u_1) [TopologicalSpace α] :
    Set α

    The set of generic points of irreducible components.

    Equations

    The irreducible component of a generic point

    Equations
    noncomputable def genericPoints.ofComponent {α : Type u_1} [TopologicalSpace α] [QuasiSober α] (x : (irreducibleComponents α)) :

    The generic point of an irreducible component.

    Equations
    noncomputable def genericPoints.equiv {α : Type u_1} [TopologicalSpace α] [T0Space α] [QuasiSober α] :

    In a sober space, the generic points corresponds bijectively to irreducible components

    Equations
    @[simp]
    theorem genericPoints.equiv_apply {α : Type u_1} [TopologicalSpace α] [T0Space α] [QuasiSober α] (x : (genericPoints α)) :