Documentation

Iwasawalib.FieldTheory.ZpExtension.Basic

ℤₚ-extension of fields #

Main definitions #

Results should be PR into mathlib #

Actual contents of the file #

structure IsMvZpExtension (p : ) [Fact (Nat.Prime p)] (d : ) (K : Type u) (Kinf : Type v) [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] :

A Galois extension K∞ / K ia called a ℤₚᵈ-extension, if its Galois group is isomorphic to ℤₚᵈ as a topological group.

Instances For
    theorem isMvZpExtension_iff (p : ) [Fact (Nat.Prime p)] (d : ) (K : Type u) (Kinf : Type v) [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] :
    @[reducible, inline]
    abbrev IsMvZpExtension.Γ {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) :

    The Galois group Γ := Gal(K∞ / K) of a ℤₚᵈ-extension K∞ / K.

    Equations
    Instances For
      noncomputable def IsMvZpExtension.continuousMulEquiv {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) :

      A random isomorphism from Γ to ℤₚᵈ.

      Equations
      Instances For
        instance IsMvZpExtension.commGroup {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) :

        The Γ is commutative.

        Equations
        noncomputable def IsMvZpExtension.Γpow {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (n : ) :

        The open subgroup Γ ^ (p ^ n) of Γ.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem IsMvZpExtension.mem_Γpow_iff {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (n : ) (σ : H.Γ) :
          σ H.Γpow n ∃ (τ : H.Γ), σ = τ ^ p ^ n

          An element is in Γ ^ (p ^ n) if and only if it is p ^ n-th power of some element.

          @[simp]
          theorem IsMvZpExtension.Γpow_zero {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) :
          H.Γpow 0 =

          Γ ^ (p ^ 0) = Γ.

          instance IsMvZpExtension.normal {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (G : Subgroup H.Γ) :

          Any subgroup in Γ is a normal subgroup.

          @[simp]
          theorem IsMvZpExtension.index_Γpow {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (n : ) :
          (↑(H.Γpow n)).index = p ^ (n * d)

          Γ ^ (p ^ n) is of index p ^ (n * d).

          theorem IsMvZpExtension.antitone_Γpow {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) :

          If m ≤ n then Γ ^ (p ^ n) ≤ Γ ^ (p ^ m).

          theorem IsMvZpExtension.strictAnti_Γpow {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (hd : d 0) :

          If m < n then Γ ^ (p ^ n) < Γ ^ (p ^ m).

          noncomputable def IsMvZpExtension.Kn {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (n : ) :

          The intermediate field Kₙ of K∞ / K fixed by Γ ^ (p ^ n).

          Equations
          Instances For
            @[simp]
            theorem IsMvZpExtension.Kn_zero {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) :
            H.Kn 0 =

            K₀ = K.

            theorem IsMvZpExtension.isGalois {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (K' : IntermediateField K Kinf) :
            IsGalois K K'

            Any intermediate field of K∞ / K is Galois.

            instance IsMvZpExtension.isGalois_Kn {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (n : ) :
            IsGalois K (H.Kn n)

            Kₙ / K is Galois.

            @[simp]
            theorem IsMvZpExtension.fixingSubgroup_Kn {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (n : ) :
            (H.Kn n).fixingSubgroup = (H.Γpow n)

            The fixing subgroup of Kₙ is Γ ^ (p ^ n).

            instance IsMvZpExtension.finiteDimensional_Kn {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (n : ) :

            Kₙ / K is a finite extension.

            @[simp]
            theorem IsMvZpExtension.finrank_Kn {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (n : ) :
            Module.finrank K (H.Kn n) = p ^ (n * d)

            Kₙ / K is of degree p ^ (n * d).

            theorem IsMvZpExtension.monotone_Kn {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) :

            If m ≤ n then Kₘ ≤ Kₙ.

            theorem IsMvZpExtension.strictMono_Kn {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (hd : d 0) :

            If m < n then Kₘ < Kₙ.

            theorem IsMvZpExtension.closure_eq_Γpow_of_closure_eq {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) {s : Set H.Γ} (h : closure (Subgroup.closure s) = ) (n : ) :
            closure (Subgroup.closure ((fun (x : H.Γ) => x ^ p ^ n) '' s)) = (H.Γpow n)

            If the set s topologically generates Γ, then the set s ^ (p ^ n) topologically generates Γ ^ (p ^ n).

            theorem IsMvZpExtension.closure_singleton_eq_Γpow_of_closure_singleton_eq {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) {γ : H.Γ} (h : closure (Subgroup.closure {γ}) = ) (n : ) :
            closure (Subgroup.closure {γ ^ p ^ n}) = (H.Γpow n)

            If γ is a topological generator of Γ, then γ ^ (p ^ n) is a topological generator of Γ ^ (p ^ n).

            theorem IsMvZpExtension.nhds_one_hasBasis {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) :
            (nhds 1).HasBasis (fun (x : ) => True) fun (n : ) => (H.Γpow n)

            Γ ^ (p ^ n) form a neighborhood basis of 1 in Γ.

            theorem IsMvZpExtension.Γpow_le_of_isOpen {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (G : Subgroup H.Γ) (h : IsOpen G) :
            ∃ (n : ), (H.Γpow n) G

            If G is an open subgroup of Γ, then it contains Γ ^ (p ^ n) for some n.

            theorem IsMvZpExtension.le_Kn_of_finite {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (K' : IntermediateField K Kinf) [FiniteDimensional K K'] :
            ∃ (n : ), K' H.Kn n

            If K' is a finite extension of K contained in K∞, then it's contained in Kₙ for some n.

            theorem IsMvZpExtension.finrank_eq_pow_of_finite {p : } [Fact (Nat.Prime p)] {d : } {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (K' : IntermediateField K Kinf) [FiniteDimensional K K'] :
            ∃ (n : ), Module.finrank K K' = p ^ n

            If K' is a finite extension of K contained in K∞, then [K' : K] = p ^ n for some n.

            def IsZpExtension (p : ) [Fact (Nat.Prime p)] (K : Type u) (Kinf : Type v) [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] :

            A Galois extension K∞ / K ia called a ℤₚ-extension, if its Galois group is isomorphic to ℤₚ as a topological group.

            Equations
            Instances For
              theorem isZpExtension_iff (p : ) [Fact (Nat.Prime p)] (K : Type u) (Kinf : Type v) [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] :
              noncomputable def IsZpExtension.continuousMulEquiv {p : } [Fact (Nat.Prime p)] {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsZpExtension p K Kinf) :

              A random isomorphism from Γ to ℤₚ.

              Equations
              Instances For
                noncomputable def IsZpExtension.topologicalGenerator {p : } [Fact (Nat.Prime p)] {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsZpExtension p K Kinf) :

                A random topological generator γ of Γ.

                Equations
                Instances For
                  theorem IsZpExtension.topologicalGenerator_spec {p : } [Fact (Nat.Prime p)] {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsZpExtension p K Kinf) :

                  The γ is a topological generator of Γ.

                  theorem IsZpExtension.closure_topologicalGenerator_pow_eq {p : } [Fact (Nat.Prime p)] {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsZpExtension p K Kinf) (n : ) :

                  The γ ^ (p ^ n) is a topological generator of Γ ^ (p ^ n).

                  theorem IsZpExtension.index_Γpow {p : } [Fact (Nat.Prime p)] {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsZpExtension p K Kinf) (n : ) :

                  Γ ^ (p ^ n) is of index p ^ n.

                  theorem IsZpExtension.finrank_Kn {p : } [Fact (Nat.Prime p)] {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsZpExtension p K Kinf) (n : ) :

                  Kₙ / K is of degree p ^ n.

                  theorem IsZpExtension.eq_Γpow_of_isOpen {p : } [Fact (Nat.Prime p)] {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsZpExtension p K Kinf) (G : Subgroup (IsMvZpExtension.Γ H)) (h : IsOpen G) :
                  ∃ (n : ), G = (IsMvZpExtension.Γpow H n)

                  If G is an open subgroup of Γ, then it is equal to Γ ^ (p ^ n) for some n.

                  theorem IsZpExtension.eq_bot_or_Γpow_of_isClosed {p : } [Fact (Nat.Prime p)] {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsZpExtension p K Kinf) (G : Subgroup (IsMvZpExtension.Γ H)) (h : IsClosed G) :
                  G = ∃ (n : ), G = (IsMvZpExtension.Γpow H n)

                  If G is a closed subgroup of Γ, then it is equal to 0 or Γ ^ (p ^ n) for some n.

                  theorem IsZpExtension.eq_Kn_of_finite {p : } [Fact (Nat.Prime p)] {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsZpExtension p K Kinf) (K' : IntermediateField K Kinf) [FiniteDimensional K K'] :
                  ∃ (n : ), K' = IsMvZpExtension.Kn H n

                  If K' is a finite extension of K contained in K∞, then it's equal to Kₙ for some n.

                  theorem IsZpExtension.eq_top_or_Kn {p : } [Fact (Nat.Prime p)] {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsZpExtension p K Kinf) (K' : IntermediateField K Kinf) :
                  K' = ∃ (n : ), K' = IsMvZpExtension.Kn H n

                  If K' is an extension of K contained in K∞, then it's equal to K∞ or Kₙ for some n.

                  theorem IsZpExtension.eq_top_of_infinite {p : } [Fact (Nat.Prime p)] {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsZpExtension p K Kinf) (K' : IntermediateField K Kinf) (h : ¬FiniteDimensional K K') :
                  K' =

                  If K' is an infinite extension of K contained in K∞, then it's equal to K∞.

                  theorem IsZpExtension.eq_Kn_of_finrank_eq {p : } [Fact (Nat.Prime p)] {K : Type u} {Kinf : Type v} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsZpExtension p K Kinf) (K' : IntermediateField K Kinf) {n : } (h : Module.finrank K K' = p ^ n) :

                  If K' is an extension of K of degree p ^ n contained in K∞, then it's equal to Kₙ.