Documentation

Iwasawalib.FieldTheory.ZpExtension.Basic

ℤₚ-extension of fields #

Main definitions #

theorem MonoidHom.continuous_iff {G : Type u_1} {H : Type u_2} [Group G] [Monoid H] [TopologicalSpace G] [TopologicalSpace H] [ContinuousMul G] [ContinuousMul H] (f : G →* H) :
Continuous f ∀ (s : Set H), 1 sIsOpen s∃ (t : Set G), 1 t IsOpen t t f ⁻¹' s
theorem AddMonoidHom.continuous_iff {G : Type u_1} {H : Type u_2} [AddGroup G] [AddMonoid H] [TopologicalSpace G] [TopologicalSpace H] [ContinuousAdd G] [ContinuousAdd H] (f : G →+ H) :
Continuous f ∀ (s : Set H), 0 sIsOpen s∃ (t : Set G), 0 t IsOpen t t f ⁻¹' s
theorem AlgEquiv.continuous_autCongr {R : Type u_1} {A₁ : Type u_2} {A₂ : Type u_3} [Field R] [Field A₁] [Field A₂] [Algebra R A₁] [Algebra R A₂] (ϕ : A₁ ≃ₐ[R] A₂) :
def AlgEquiv.continuousAutCongr {R : Type u_1} {A₁ : Type u_2} {A₂ : Type u_3} [Field R] [Field A₁] [Field A₂] [Algebra R A₁] [Algebra R A₂] (ϕ : A₁ ≃ₐ[R] A₂) :
(A₁ ≃ₐ[R] A₁) ≃ₜ* A₂ ≃ₐ[R] A₂

Continuous version of AlgEquiv.autCongr.

Equations
Instances For
    @[simp]
    theorem AlgEquiv.continuousAutCongr_apply {R : Type u_1} {A₁ : Type u_2} {A₂ : Type u_3} [Field R] [Field A₁] [Field A₂] [Algebra R A₁] [Algebra R A₂] (ϕ : A₁ ≃ₐ[R] A₂) (ψ : A₁ ≃ₐ[R] A₁) :
    @[simp]
    theorem AlgEquiv.continuousAutCongr_toMulEquiv {R : Type u_1} {A₁ : Type u_2} {A₂ : Type u_3} [Field R] [Field A₁] [Field A₂] [Algebra R A₁] [Algebra R A₂] (ϕ : A₁ ≃ₐ[R] A₂) :

    ℤₚᵈ-extension #

    def MvZpExtension (p : ) [Fact (Nat.Prime p)] (ι : Type u_1) (K : Type u_2) (Kinf : Type u_3) [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] :
    Type (max u_3 u_1)

    MvZpExtension is an isomorphism of the Galois group of a Galois extension K∞ / K to ℤₚᵈ as topological groups.

    Equations
    Instances For
      def MvZpExtension.congr {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) {ι' : Type u_4} (e : ι ι') (Kinf' : Type u_5) [Field Kinf'] [Algebra K Kinf'] (f : Kinf ≃ₐ[K] Kinf') [IsGalois K Kinf'] :
      MvZpExtension p ι' K Kinf'

      Transfer MvZpExtension along field isomorphisms.

      Equations
      Instances For
        instance MvZpExtension.normal {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (G : Subgroup (EquivMvZp.Γ H)) :

        Any subgroup in Γ is a normal subgroup.

        noncomputable def MvZpExtension.Kn {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Finite ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (n : ) :

        The intermediate field Kₙ of K∞ / K fixed by Γ ^ (p ^ n).

        Equations
        Instances For
          @[simp]
          theorem MvZpExtension.Kn_zero {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Finite ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) :
          H.Kn 0 =

          K₀ = K.

          theorem MvZpExtension.isGalois {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (K' : IntermediateField K Kinf) :
          IsGalois K K'

          Any intermediate field of K∞ / K is Galois.

          instance MvZpExtension.isGalois_Kn {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Finite ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (n : ) :
          IsGalois K (H.Kn n)

          Kₙ / K is Galois.

          @[simp]
          theorem MvZpExtension.fixingSubgroup_Kn {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Finite ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (n : ) :

          The fixing subgroup of Kₙ is Γ ^ (p ^ n).

          instance MvZpExtension.finiteDimensional_Kn {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Finite ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (n : ) :

          Kₙ / K is a finite extension.

          @[simp]
          theorem MvZpExtension.finrank_Kn {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Finite ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (n : ) :
          Module.finrank K (H.Kn n) = p ^ (n * Nat.card ι)

          Kₙ / K is of degree p ^ (n * #ι).

          theorem MvZpExtension.monotone_Kn {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Finite ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) :

          If m ≤ n then Kₘ ≤ Kₙ.

          theorem MvZpExtension.strictMono_Kn {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Finite ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) [Nonempty ι] :

          If m < n then Kₘ < Kₙ.

          theorem MvZpExtension.le_Kn_of_finite {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Finite ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (K' : IntermediateField K Kinf) [FiniteDimensional K K'] :
          ∃ (n : ), K' H.Kn n

          If K' is a finite extension of K contained in K∞, then it's contained in Kₙ for some n.

          theorem MvZpExtension.finrank_eq_pow_of_finite {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Finite ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (K' : IntermediateField K Kinf) [FiniteDimensional K K'] :
          ∃ (n : ), Module.finrank K K' = p ^ n

          If K' is a finite extension of K contained in K∞, then [K' : K] = p ^ n for some n.

          ℤₚ-extension #

          def MvZpExtension.ofContinuousMulEquiv₁ {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Unique ι] [IsGalois K Kinf] (e : (Kinf ≃ₐ[K] Kinf) ≃ₜ* Multiplicative ℤ_[p]) :
          MvZpExtension p ι K Kinf

          An isomorphism from Γ to ℤₚ gives an MvZpExtension when ι consists of exactly one element.

          Equations
          Instances For
            theorem MvZpExtension.finrank_Kn₁ {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Unique ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (n : ) :
            Module.finrank K (H.Kn n) = p ^ n

            Kₙ / K is of degree p ^ n.

            theorem MvZpExtension.eq_Kn_of_finite {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Unique ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (K' : IntermediateField K Kinf) [FiniteDimensional K K'] :
            ∃ (n : ), K' = H.Kn n

            If K' is a finite extension of K contained in K∞, then it's equal to Kₙ for some n.

            theorem MvZpExtension.eq_top_or_Kn {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Unique ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (K' : IntermediateField K Kinf) :
            K' = ∃ (n : ), K' = H.Kn n

            If K' is an extension of K contained in K∞, then it's equal to K∞ or Kₙ for some n.

            theorem MvZpExtension.eq_top_of_infinite {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Unique ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (K' : IntermediateField K Kinf) (h : ¬FiniteDimensional K K') :
            K' =

            If K' is an infinite extension of K contained in K∞, then it's equal to K∞.

            theorem MvZpExtension.eq_Kn_of_finrank_eq {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [Unique ι] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (K' : IntermediateField K Kinf) {n : } (h : Module.finrank K K' = p ^ n) :
            K' = H.Kn n

            If K' is an extension of K of degree p ^ n contained in K∞, then it's equal to Kₙ.

            Prop version #

            def IsMvZpExtension (p : ) [Fact (Nat.Prime p)] (d : ) (K : Type u_2) (Kinf : Type u_3) [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] :

            IsMvZpExtension is a Prop which asserts that a Galois extension is with Galois group isomorphic to ℤₚᵈ as a topological group.

            Equations
            Instances For
              theorem IsMvZpExtension.congr {p : } [Fact (Nat.Prime p)] {d : } {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (Kinf' : Type u_4) [Field Kinf'] [Algebra K Kinf'] (f : Kinf ≃ₐ[K] Kinf') [IsGalois K Kinf'] :
              IsMvZpExtension p d K Kinf'

              Transfer IsMvZpExtension along field isomorphisms.

              noncomputable def IsMvZpExtension.mvZpExtension {p : } [Fact (Nat.Prime p)] {d : } {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) :
              MvZpExtension p (Fin d) K Kinf

              A random isomorphism from Γ to ℤₚᵈ.

              Equations
              Instances For
                instance IsMvZpExtension.normal {p : } [Fact (Nat.Prime p)] {d : } {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (G : Subgroup (IsEquivMvZp.Γ H)) :

                Any subgroup in Γ is a normal subgroup.

                noncomputable def IsMvZpExtension.Kn {p : } [Fact (Nat.Prime p)] {d : } {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (n : ) :

                The intermediate field Kₙ of K∞ / K fixed by Γ ^ (p ^ n).

                Equations
                Instances For
                  @[simp]
                  theorem IsMvZpExtension.Kn_zero {p : } [Fact (Nat.Prime p)] {d : } {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) :
                  H.Kn 0 =

                  K₀ = K.

                  theorem IsMvZpExtension.isGalois {p : } [Fact (Nat.Prime p)] {d : } {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (K' : IntermediateField K Kinf) :
                  IsGalois K K'

                  Any intermediate field of K∞ / K is Galois.

                  instance IsMvZpExtension.isGalois_Kn {p : } [Fact (Nat.Prime p)] {d : } {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (n : ) :
                  IsGalois K (H.Kn n)

                  Kₙ / K is Galois.

                  @[simp]
                  theorem IsMvZpExtension.fixingSubgroup_Kn {p : } [Fact (Nat.Prime p)] {d : } {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (n : ) :

                  The fixing subgroup of Kₙ is Γ ^ (p ^ n).

                  instance IsMvZpExtension.finiteDimensional_Kn {p : } [Fact (Nat.Prime p)] {d : } {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (n : ) :

                  Kₙ / K is a finite extension.

                  @[simp]
                  theorem IsMvZpExtension.finrank_Kn {p : } [Fact (Nat.Prime p)] {d : } {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (n : ) :
                  Module.finrank K (H.Kn n) = p ^ (n * d)

                  Kₙ / K is of degree p ^ (n * d).

                  theorem IsMvZpExtension.monotone_Kn {p : } [Fact (Nat.Prime p)] {d : } {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) :

                  If m ≤ n then Kₘ ≤ Kₙ.

                  theorem IsMvZpExtension.strictMono_Kn {p : } [Fact (Nat.Prime p)] {d : } {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) [NeZero d] :

                  If m < n then Kₘ < Kₙ.

                  theorem IsMvZpExtension.le_Kn_of_finite {p : } [Fact (Nat.Prime p)] {d : } {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (K' : IntermediateField K Kinf) [FiniteDimensional K K'] :
                  ∃ (n : ), K' H.Kn n

                  If K' is a finite extension of K contained in K∞, then it's contained in Kₙ for some n.

                  theorem IsMvZpExtension.finrank_eq_pow_of_finite {p : } [Fact (Nat.Prime p)] {d : } {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p d K Kinf) (K' : IntermediateField K Kinf) [FiniteDimensional K K'] :
                  ∃ (n : ), Module.finrank K K' = p ^ n

                  If K' is a finite extension of K contained in K∞, then [K' : K] = p ^ n for some n.

                  ℤₚ-extension #

                  theorem isMvZpExtension₁_iff {p : } [Fact (Nat.Prime p)] {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] :
                  theorem IsMvZpExtension.finrank_Kn₁ {p : } [Fact (Nat.Prime p)] {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p 1 K Kinf) (n : ) :
                  Module.finrank K (H.Kn n) = p ^ n

                  Kₙ / K is of degree p ^ n.

                  theorem IsMvZpExtension.eq_Kn_of_finite {p : } [Fact (Nat.Prime p)] {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p 1 K Kinf) (K' : IntermediateField K Kinf) [FiniteDimensional K K'] :
                  ∃ (n : ), K' = H.Kn n

                  If K' is a finite extension of K contained in K∞, then it's equal to Kₙ for some n.

                  theorem IsMvZpExtension.eq_top_or_Kn {p : } [Fact (Nat.Prime p)] {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p 1 K Kinf) (K' : IntermediateField K Kinf) :
                  K' = ∃ (n : ), K' = H.Kn n

                  If K' is an extension of K contained in K∞, then it's equal to K∞ or Kₙ for some n.

                  theorem IsMvZpExtension.eq_top_of_infinite {p : } [Fact (Nat.Prime p)] {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p 1 K Kinf) (K' : IntermediateField K Kinf) (h : ¬FiniteDimensional K K') :
                  K' =

                  If K' is an infinite extension of K contained in K∞, then it's equal to K∞.

                  theorem IsMvZpExtension.eq_Kn_of_finrank_eq {p : } [Fact (Nat.Prime p)] {K : Type u_2} {Kinf : Type u_3} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : IsMvZpExtension p 1 K Kinf) (K' : IntermediateField K Kinf) {n : } (h : Module.finrank K K' = p ^ n) :
                  K' = H.Kn n

                  If K' is an extension of K of degree p ^ n contained in K∞, then it's equal to Kₙ.