Documentation

Iwasawalib.NumberTheory.Padics.EquivMvZp

Assertion that a (multiplicative) topological group is isomorphic to ℤₚᵈ #

theorem Equiv.arrowCongr_eq_piCongrLeft {M : Type u_1} {N : Type u_2} {P : Type u_3} (f : M N) :
f.arrowCongr (Equiv.refl P) = piCongrLeft (fun (x : N) => P) f
structure EquivMvZp (G : Type u_1) [Group G] [TopologicalSpace G] (p : ) [Fact (Nat.Prime p)] (ι : Type u_2) :
Type (max u_1 u_2)

An EquivMvZp G p ι is just an isomorphism of G and Multiplicative (ι → ℤ_[p]) as topological groups.

Instances For
    def EquivMvZp.congr {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) {G' : Type u_3} [Group G'] [TopologicalSpace G'] (f : G ≃ₜ* G') {ι' : Type u_4} (e : ι ι') :
    EquivMvZp G' p ι'

    Transfer EquivMvZp along isomorphisms.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[reducible, inline]
      abbrev EquivMvZp.Γ {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) :
      Type u_1

      The EquivMvZp.Γ is just the group G itself.

      Equations
      Instances For
        def EquivMvZp.continuousMulEquiv {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) :

        The isomorphism from Γ to ℤₚᵈ.

        Equations
        Instances For
          instance EquivMvZp.isMulCommutative {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) :

          The Γ is commutative.

          noncomputable def EquivMvZp.Γpow' {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) (n : ) :

          The (normal) subgroup Γ ^ (p ^ n) of Γ.

          This is only used internally, as later we only considered the case that ι is finite, in which case Γ ^ (p ^ n) is an open normal subgroup.

          Equations
          Instances For
            theorem EquivMvZp.mem_Γpow'_iff {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) (n : ) (σ : H.Γ) :
            σ H.Γpow' n ∃ (τ : H.Γ), σ = τ ^ p ^ n

            An element is in Γ ^ (p ^ n) if and only if it is p ^ n-th power of some element.

            @[simp]
            theorem EquivMvZp.Γpow'_zero {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) :

            Γ ^ (p ^ 0) = Γ.

            theorem EquivMvZp.antitone_Γpow' {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) :

            If m ≤ n then Γ ^ (p ^ n) ≤ Γ ^ (p ^ m).

            theorem EquivMvZp.strictAnti_Γpow' {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Nonempty ι] :

            If m < n then Γ ^ (p ^ n) < Γ ^ (p ^ m).

            theorem EquivMvZp.isOpen_Γpow' {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Finite ι] (n : ) :
            IsOpen (H.Γpow' n)

            The Γ ^ (p ^ n) is open.

            noncomputable def EquivMvZp.Γpow {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Finite ι] (n : ) :

            The open normal subgroup Γ ^ (p ^ n) of Γ.

            Equations
            • H.Γpow n = { toSubgroup := H.Γpow' n, isOpen' := , isNormal' := }
            Instances For
              theorem EquivMvZp.toSubgroup_Γpow {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Finite ι] (n : ) :
              theorem EquivMvZp.mem_Γpow_iff {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Finite ι] (n : ) (σ : H.Γ) :
              σ H.Γpow n ∃ (τ : H.Γ), σ = τ ^ p ^ n

              An element is in Γ ^ (p ^ n) if and only if it is p ^ n-th power of some element.

              @[simp]
              theorem EquivMvZp.Γpow_zero {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Finite ι] :
              H.Γpow 0 =

              Γ ^ (p ^ 0) = Γ.

              @[simp]
              theorem EquivMvZp.index_Γpow {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Finite ι] (n : ) :
              (↑(H.Γpow n).toOpenSubgroup).index = p ^ (n * Nat.card ι)

              Γ ^ (p ^ n) is of index p ^ (n * #ι).

              theorem EquivMvZp.antitone_Γpow {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Finite ι] :

              If m ≤ n then Γ ^ (p ^ n) ≤ Γ ^ (p ^ m).

              theorem EquivMvZp.strictAnti_Γpow {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Finite ι] [Nonempty ι] :

              If m < n then Γ ^ (p ^ n) < Γ ^ (p ^ m).

              theorem EquivMvZp.closure_eq_Γpow_of_closure_eq {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Finite ι] {s : Set H.Γ} (h : closure (Subgroup.closure s) = Set.univ) (n : ) :
              closure (Subgroup.closure ((fun (x : H.Γ) => x ^ p ^ n) '' s)) = (H.Γpow n)

              If the set s topologically generates Γ, then the set s ^ (p ^ n) topologically generates Γ ^ (p ^ n).

              theorem EquivMvZp.closure_singleton_eq_Γpow_of_closure_singleton_eq {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Finite ι] {γ : H.Γ} (h : closure (Subgroup.closure {γ}) = Set.univ) (n : ) :
              closure (Subgroup.closure {γ ^ p ^ n}) = (H.Γpow n)

              If γ is a topological generator of Γ, then γ ^ (p ^ n) is a topological generator of Γ ^ (p ^ n).

              theorem EquivMvZp.nhds_one_hasAntitoneBasis {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Finite ι] :
              (nhds 1).HasAntitoneBasis fun (n : ) => (H.Γpow n)

              Γ ^ (p ^ n) form a neighborhood basis of 1 in Γ.

              theorem EquivMvZp.Γpow_le_of_isOpen {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Finite ι] (O : Subgroup H.Γ) (h : IsOpen O) :
              ∃ (n : ), (H.Γpow n).toOpenSubgroup O

              If O is an open subgroup of Γ, then it contains Γ ^ (p ^ n) for some n.

              An isomorphism from Γ to ℤₚ gives an EquivMvZp G p ι when ι consists of exactly one element.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def EquivMvZp.continuousMulEquiv₁ {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Unique ι] :

                The isomorphism from Γ to ℤₚ.

                Equations
                Instances For
                  noncomputable def EquivMvZp.topologicalGenerator {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Unique ι] :
                  H.Γ

                  A random topological generator γ of Γ.

                  Equations
                  Instances For

                    The γ is a topological generator of Γ.

                    theorem EquivMvZp.closure_topologicalGenerator_pow_eq {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Unique ι] (n : ) :

                    The γ ^ (p ^ n) is a topological generator of Γ ^ (p ^ n).

                    theorem EquivMvZp.index_Γpow₁ {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Unique ι] (n : ) :
                    (↑(H.Γpow n).toOpenSubgroup).index = p ^ n

                    Γ ^ (p ^ n) is of index p ^ n.

                    theorem EquivMvZp.eq_Γpow_of_isOpen {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Unique ι] (O : Subgroup H.Γ) (h : IsOpen O) :
                    ∃ (n : ), O = (H.Γpow n).toOpenSubgroup

                    If O is an open subgroup of Γ, then it is equal to Γ ^ (p ^ n) for some n.

                    theorem EquivMvZp.eq_bot_or_Γpow_of_isClosed {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Unique ι] (O : Subgroup H.Γ) (h : IsClosed O) :
                    O = ∃ (n : ), O = (H.Γpow n).toOpenSubgroup

                    If O is a closed subgroup of Γ, then it is equal to 0 or Γ ^ (p ^ n) for some n.

                    def IsEquivMvZp (G : Type u_1) [Group G] [TopologicalSpace G] (p : ) [Fact (Nat.Prime p)] (d : ) :

                    IsEquivMvZp G p d means there exists an isomorphism of G and ℤₚᵈ.

                    Equations
                    Instances For
                      theorem EquivMvZp.isEquivMvZp {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {ι : Type u_2} (H : EquivMvZp G p ι) [Finite ι] :
                      theorem IsEquivMvZp.congr {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {d : } (H : IsEquivMvZp G p d) {G' : Type u_3} [Group G'] [TopologicalSpace G'] (f : G ≃ₜ* G') :

                      Transfer IsEquivMvZp along isomorphisms.

                      @[reducible, inline]
                      abbrev IsEquivMvZp.Γ {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {d : } (H : IsEquivMvZp G p d) :
                      Type u_1

                      The IsEquivMvZp.Γ is just the group G itself.

                      Equations
                      Instances For
                        noncomputable def IsEquivMvZp.continuousMulEquiv {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {d : } (H : IsEquivMvZp G p d) :

                        A random isomorphism from Γ to ℤₚᵈ.

                        Equations
                        Instances For
                          instance IsEquivMvZp.isMulCommutative {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {d : } (H : IsEquivMvZp G p d) :

                          The Γ is commutative.

                          noncomputable def IsEquivMvZp.Γpow {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {d : } (H : IsEquivMvZp G p d) (n : ) :

                          The open normal subgroup Γ ^ (p ^ n) of Γ.

                          Equations
                          Instances For
                            theorem IsEquivMvZp.mem_Γpow_iff {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {d : } (H : IsEquivMvZp G p d) (n : ) (σ : H.Γ) :
                            σ H.Γpow n ∃ (τ : H.Γ), σ = τ ^ p ^ n

                            An element is in Γ ^ (p ^ n) if and only if it is p ^ n-th power of some element.

                            @[simp]
                            theorem IsEquivMvZp.Γpow_zero {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {d : } (H : IsEquivMvZp G p d) :
                            H.Γpow 0 =

                            Γ ^ (p ^ 0) = Γ.

                            @[simp]
                            theorem IsEquivMvZp.index_Γpow {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {d : } (H : IsEquivMvZp G p d) (n : ) :
                            (↑(H.Γpow n).toOpenSubgroup).index = p ^ (n * d)

                            Γ ^ (p ^ n) is of index p ^ (n * d).

                            theorem IsEquivMvZp.antitone_Γpow {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {d : } (H : IsEquivMvZp G p d) :

                            If m ≤ n then Γ ^ (p ^ n) ≤ Γ ^ (p ^ m).

                            theorem IsEquivMvZp.strictAnti_Γpow {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {d : } (H : IsEquivMvZp G p d) [NeZero d] :

                            If m < n then Γ ^ (p ^ n) < Γ ^ (p ^ m).

                            theorem IsEquivMvZp.closure_eq_Γpow_of_closure_eq {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {d : } (H : IsEquivMvZp G p d) {s : Set H.Γ} (h : closure (Subgroup.closure s) = Set.univ) (n : ) :
                            closure (Subgroup.closure ((fun (x : H.Γ) => x ^ p ^ n) '' s)) = (H.Γpow n)

                            If the set s topologically generates Γ, then the set s ^ (p ^ n) topologically generates Γ ^ (p ^ n).

                            theorem IsEquivMvZp.closure_singleton_eq_Γpow_of_closure_singleton_eq {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {d : } (H : IsEquivMvZp G p d) {γ : H.Γ} (h : closure (Subgroup.closure {γ}) = Set.univ) (n : ) :
                            closure (Subgroup.closure {γ ^ p ^ n}) = (H.Γpow n)

                            If γ is a topological generator of Γ, then γ ^ (p ^ n) is a topological generator of Γ ^ (p ^ n).

                            theorem IsEquivMvZp.nhds_one_hasAntitoneBasis {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {d : } (H : IsEquivMvZp G p d) :
                            (nhds 1).HasAntitoneBasis fun (n : ) => (H.Γpow n)

                            Γ ^ (p ^ n) form a neighborhood basis of 1 in Γ.

                            theorem IsEquivMvZp.Γpow_le_of_isOpen {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] {d : } (H : IsEquivMvZp G p d) (O : Subgroup H.Γ) (h : IsOpen O) :
                            ∃ (n : ), (H.Γpow n).toOpenSubgroup O

                            If O is an open subgroup of Γ, then it contains Γ ^ (p ^ n) for some n.

                            A random isomorphism from Γ to ℤₚ.

                            Equations
                            Instances For
                              noncomputable def IsEquivMvZp.topologicalGenerator {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] (H : IsEquivMvZp G p 1) :
                              H.Γ

                              A random topological generator γ of Γ.

                              Equations
                              Instances For

                                The γ is a topological generator of Γ.

                                The γ ^ (p ^ n) is a topological generator of Γ ^ (p ^ n).

                                theorem IsEquivMvZp.index_Γpow₁ {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] (H : IsEquivMvZp G p 1) (n : ) :
                                (↑(H.Γpow n).toOpenSubgroup).index = p ^ n

                                Γ ^ (p ^ n) is of index p ^ n.

                                theorem IsEquivMvZp.eq_Γpow_of_isOpen {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] (H : IsEquivMvZp G p 1) (O : Subgroup H.Γ) (h : IsOpen O) :
                                ∃ (n : ), O = (H.Γpow n).toOpenSubgroup

                                If O is an open subgroup of Γ, then it is equal to Γ ^ (p ^ n) for some n.

                                theorem IsEquivMvZp.eq_bot_or_Γpow_of_isClosed {G : Type u_1} [Group G] [TopologicalSpace G] {p : } [Fact (Nat.Prime p)] (H : IsEquivMvZp G p 1) (O : Subgroup H.Γ) (h : IsClosed O) :
                                O = ∃ (n : ), O = (H.Γpow n).toOpenSubgroup

                                If O is a closed subgroup of Γ, then it is equal to 0 or Γ ^ (p ^ n) for some n.