Documentation

Iwasawalib.FieldTheory.ZpExtension.Cyclotomic

Cyclotomic ℤₚ-extension #

The assertion that a field extension is a cyclotomic $p^∞$-extension #

@[reducible, inline]
abbrev IsCyclotomicPinfExtension (p : ) (A : Type u_3) (B : Type u_4) [CommRing A] [CommRing B] [Algebra A B] :

IsCyclotomicPinfExtension p A B is the assertion that B / A is a cyclotomic $p^∞$-extension. See IsCyclotomicExtension for more details.

Equations
Instances For
    theorem IsCyclotomicPinfExtension.equiv (p : ) (A : Type u_3) (B : Type u_4) [CommRing A] [CommRing B] [Algebra A B] {C : Type u_5} [CommRing C] [Algebra A C] [IsCyclotomicPinfExtension p A B] (f : B ≃ₐ[A] C) :

    The field $K(μ_{p^∞})$ #

    def CyclotomicPinfField (p : ) (K : Type u) [Field K] :

    The field $K(μ_{p^∞})$ inside the separable closure of K. Internally it is defined to be an IntermediateField K (SeparableClosure K), but please avoid using it in the public interface. Instead, use IsSepClosed.lift to construct a map of it to SeparableClosure K.

    Equations
    Instances For
      noncomputable instance CyclotomicPinfField.instInhabited (p : ) (K : Type u) [Field K] :
      Equations
      instance CyclotomicPinfField.instCharP (p : ) (K : Type u) [Field K] (p' : ) [CharP K p'] :
      instance CyclotomicPinfField.instExpChar (p : ) (K : Type u) [Field K] (p' : ) [ExpChar K p'] :
      noncomputable instance CyclotomicPinfField.algebra' (p : ) (K : Type u) [Field K] (R : Type u_3) [CommRing R] [Algebra R K] :
      Equations
      theorem CyclotomicPinfField.isCyclotomicExtension (p : ) (K : Type u) [Field K] [NeZero p] (s : Set ) (h1 : s {0} Set.range fun (x : ) => p ^ x) (h2 : ∀ (N : ), nN, p ^ n s) :

      The intermediate field of $K(μ_{p^∞}) / K$ fixed by the torsion subgroup of the Galois group of $K(μ_{p^∞}) / K$. CyclotomicPinfField.isCyclotomicZpExtension_cyclotomicZpSubfield shows that, if $K(μ_{p^∞}) / K$ is an infinite extension, then this field over K is a cyclotomic ℤₚ-extension.

      Equations
      Instances For

        Some complemenatry results on cyclotomic character #

        noncomputable def continuousCyclotomicCharacter (p : ) (K : Type u) [Field K] (L : Type u_3) [Field L] [Algebra K L] [Fact (Nat.Prime p)] :
        Gal(L/K) →ₜ* ℤ_[p]ˣ

        The restriction of cyclotomicCharacter to L ≃ₐ[K] L and which is continuous.

        Equations
        Instances For
          theorem continuousCyclotomicCharacter_apply (p : ) (K : Type u) [Field K] (L : Type u_3) [Field L] [Algebra K L] [Fact (Nat.Prime p)] (f : Gal(L/K)) :
          noncomputable def CyclotomicPinfField.torsionGal (p : ) (K : Type u) [Field K] [Fact (Nat.Prime p)] [NeZero p] :

          The torsion subgroup of the Galois group of $K(μ_{p^∞}) / K$, which is a closed subgroup.

          Equations
          Instances For

            The assertion that a field extension is a cyclotomic ℤₚ-extension #

            structure IsCyclotomicZpExtension (p : ) (K : Type u) (Kinf : Type u_1) [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] [Fact (Nat.Prime p)] :

            K∞ / K is a cyclotomic ℤₚ-extension, if it is a ℤₚ-extension, and K∞ can be realized as an intermediate field of $K(μ_{p^∞}) / K$.

            Instances For
              theorem isCyclotomicZpExtension_iff (p : ) (K : Type u) (Kinf : Type u_1) [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] [Fact (Nat.Prime p)] :
              theorem IsCyclotomicZpExtension.congr {p : } {K : Type u} {Kinf : Type u_1} {Kinf' : Type u_2} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] [Field Kinf'] [Algebra K Kinf'] [IsGalois K Kinf'] [Fact (Nat.Prime p)] (H : IsCyclotomicZpExtension p K Kinf) (f : Kinf ≃ₐ[K] Kinf') :
              theorem IsCyclotomicZpExtension.infinite_dimensional {p : } {K : Type u} {Kinf : Type u_1} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] [Fact (Nat.Prime p)] (H : IsCyclotomicZpExtension p K Kinf) :
              theorem IsCyclotomicZpExtension.neZero {p : } {K : Type u} {Kinf : Type u_1} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] [Fact (Nat.Prime p)] (H : IsCyclotomicZpExtension p K Kinf) :
              NeZero p
              noncomputable def IsCyclotomicZpExtension.algHomCyclotomicPinfField {p : } {K : Type u} {Kinf : Type u_1} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] [Fact (Nat.Prime p)] (H : IsCyclotomicZpExtension p K Kinf) :

              A random map from K∞ to $K(μ_{p^∞})$.

              Equations
              Instances For
                theorem IsCyclotomicZpExtension.unique {p : } {K : Type u} {Kinf : Type u_1} {Kinf' : Type u_2} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] [Field Kinf'] [Algebra K Kinf'] [IsGalois K Kinf'] [Fact (Nat.Prime p)] (H : IsCyclotomicZpExtension p K Kinf) (H' : IsCyclotomicZpExtension p K Kinf') :
                Nonempty (Kinf ≃ₐ[K] Kinf')
                noncomputable def InfiniteGalois.normalAutContinuousEquivQuotient {k : Type u_3} {K : Type u_4} [Field k] [Field K] [Algebra k K] [IsGalois k K] (H : ClosedSubgroup Gal(K/k)) [(↑H).Normal] :
                Gal(K/k) H ≃ₜ* Gal((IntermediateField.fixedField H)/k)

                If H is a closed normal subgroup of Gal(K / k), then Gal(fixedField H / k) is isomorphic to Gal(K / k) ⧸ H as a topological group.

                TODO: should go to mathlib

                Equations
                Instances For

                  If $K(μ_{p^∞}) / K$ is an infinite extension, then $K(μ_{p^∞})^Δ / K$ is a cyclotomic ℤₚ-extension, where Δ is the torsion subgroup of the Galois group of $K(μ_{p^∞}) / K$.

                  The assertion that a field have a cyclotomic ℤₚ-extension #

                  class HasCyclotomicZpExtension (p : ) (K : Type u) [Field K] [Fact (Nat.Prime p)] :

                  HasCyclotomicZpExtension p K is the assertion that the field K have a cyclotomic ℤₚ-extension.

                  Instances
                    theorem hasCyclotomicZpExtension_iff (p : ) (K : Type u) [Field K] [Fact (Nat.Prime p)] :
                    HasCyclotomicZpExtension p K ∃ (Kinf : Type u) (x : Field Kinf) (x_1 : Algebra K Kinf) (x_2 : IsGalois K Kinf), IsCyclotomicZpExtension p K Kinf
                    theorem IsCyclotomicZpExtension.hasCyclotomicZpExtension {p : } {K : Type u} {Kinf : Type u_1} [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] [Fact (Nat.Prime p)] (H : IsCyclotomicZpExtension p K Kinf) :

                    K have a cyclotomic ℤₚ-extension if and only if $K(μ_{p^∞}) / K$ is an infinite extension.

                    Any number field has a cyclotomic ℤₚ-extension.