Cyclotomic ℤₚ-extension #
The assertion that a field extension is a cyclotomic $p^∞$-extension #
IsCyclotomicPinfExtension p A B is the assertion that B / A is a cyclotomic
$p^∞$-extension. See IsCyclotomicExtension for more details.
Equations
- IsCyclotomicPinfExtension p A B = IsCyclotomicExtension (Set.range fun (x : ℕ) => p ^ x) A B
Instances For
The field $K(μ_{p^∞})$ #
The field $K(μ_{p^∞})$ inside the separable closure of K. Internally it is defined to be an
IntermediateField K (SeparableClosure K), but please avoid using it in the public interface.
Instead, use IsSepClosed.lift to construct a map of it to SeparableClosure K.
Equations
- CyclotomicPinfField p K = ↥(IntermediateField.adjoin K {x : SeparableClosure K | ∃ (n : ℕ), x ^ p ^ n = 1})
Instances For
Equations
- CyclotomicPinfField.instField p K = inferInstanceAs (Field ↥(IntermediateField.adjoin K {x : SeparableClosure K | ∃ (n : ℕ), x ^ p ^ n = 1}))
Equations
- CyclotomicPinfField.algebra p K = inferInstanceAs (Algebra K ↥(IntermediateField.adjoin K {x : SeparableClosure K | ∃ (n : ℕ), x ^ p ^ n = 1}))
Equations
- CyclotomicPinfField.instInhabited p K = { default := 0 }
Equations
- CyclotomicPinfField.algebra' p K R = inferInstanceAs (Algebra R ↥(IntermediateField.adjoin K {x : SeparableClosure K | ∃ (n : ℕ), x ^ p ^ n = 1}))
The intermediate field of $K(μ_{p^∞}) / K$ fixed by the torsion subgroup of the Galois group
of $K(μ_{p^∞}) / K$. CyclotomicPinfField.isCyclotomicZpExtension_cyclotomicZpSubfield shows that,
if $K(μ_{p^∞}) / K$ is an infinite extension,
then this field over K is a cyclotomic ℤₚ-extension.
Equations
- CyclotomicPinfField.cyclotomicZpSubfield p K = if h : p ≠ 0 then IntermediateField.fixedField (CommGroup.torsion Gal(CyclotomicPinfField p K/K)) else ⊥
Instances For
Some complemenatry results on cyclotomic character #
The restriction of cyclotomicCharacter to L ≃ₐ[K] L and which is continuous.
Equations
- continuousCyclotomicCharacter p K L = { toMonoidHom := (cyclotomicCharacter L p).comp (MulSemiringAction.toRingAut Gal(L/K) L), continuous_toFun := ⋯ }
Instances For
The torsion subgroup of the Galois group of $K(μ_{p^∞}) / K$, which is a closed subgroup.
Equations
- CyclotomicPinfField.torsionGal p K = { toSubgroup := CommGroup.torsion Gal(CyclotomicPinfField p K/K), isClosed' := ⋯ }
Instances For
The assertion that a field extension is a cyclotomic ℤₚ-extension #
K∞ / K is a cyclotomic ℤₚ-extension, if it is a ℤₚ-extension, and K∞ can be realized as
an intermediate field of $K(μ_{p^∞}) / K$.
- isZpExtension : IsMvZpExtension p 1 K Kinf
- nonempty_algHom_cyclotomicPinfField : Nonempty (Kinf →ₐ[K] CyclotomicPinfField p K)
Instances For
If H is a closed normal subgroup of Gal(K / k),
then Gal(fixedField H / k) is isomorphic to Gal(K / k) ⧸ H as a topological group.
TODO: should go to mathlib
Equations
- InfiniteGalois.normalAutContinuousEquivQuotient H = { toMulEquiv := InfiniteGalois.normalAutEquivQuotient H, continuous_toFun := ⋯, continuous_invFun := ⋯ }
Instances For
If $K(μ_{p^∞}) / K$ is an infinite extension, then $K(μ_{p^∞})^Δ / K$ is a cyclotomic
ℤₚ-extension, where Δ is the torsion subgroup of the Galois group of $K(μ_{p^∞}) / K$.
The assertion that a field have a cyclotomic ℤₚ-extension #
HasCyclotomicZpExtension p K is the assertion that the field K have a
cyclotomic ℤₚ-extension.
- exists_isCyclotomicZpExtension : ∃ (Kinf : Type u) (x : Field Kinf) (x_1 : Algebra K Kinf) (x_2 : IsGalois K Kinf), IsCyclotomicZpExtension p K Kinf
Instances
Any number field has a cyclotomic ℤₚ-extension.