Cyclotomic ℤₚ
-extension #
The field $K(\mu_{p^\infty})$ #
The field $K(\mu_{p^\infty})$. Internally it is defined to be an
IntermediateField K (SeparableClosure K)
, but please avoid using it in the public interface.
Instead, use IsSepClosed.lift
to construct a map of it to SeparableClosure K
.
Equations
- CyclotomicPinfField p K = ↥(IntermediateField.adjoin K {x : SeparableClosure K | ∃ (n : ℕ), x ^ p ^ n = 1})
Instances For
noncomputable instance
CyclotomicPinfField.instField
(p : ℕ)
(K : Type u_1)
[Field K]
:
Field (CyclotomicPinfField p K)
Equations
- CyclotomicPinfField.instField p K = inferInstanceAs (Field ↥(IntermediateField.adjoin K {x : SeparableClosure K | ∃ (n : ℕ), x ^ p ^ n = 1}))
noncomputable instance
CyclotomicPinfField.algebra
(p : ℕ)
(K : Type u_1)
[Field K]
:
Algebra K (CyclotomicPinfField p K)
Equations
- CyclotomicPinfField.algebra p K = inferInstanceAs (Algebra K ↥(IntermediateField.adjoin K {x : SeparableClosure K | ∃ (n : ℕ), x ^ p ^ n = 1}))
noncomputable instance
CyclotomicPinfField.instInhabited
(p : ℕ)
(K : Type u_1)
[Field K]
:
Inhabited (CyclotomicPinfField p K)
Equations
- CyclotomicPinfField.instInhabited p K = { default := 0 }
instance
CyclotomicPinfField.instCharZero
(p : ℕ)
(K : Type u_1)
[Field K]
[CharZero K]
:
CharZero (CyclotomicPinfField p K)
instance
CyclotomicPinfField.instCharP
(p : ℕ)
(K : Type u_1)
[Field K]
(p' : ℕ)
[CharP K p']
:
CharP (CyclotomicPinfField p K) p'
instance
CyclotomicPinfField.instExpChar
(p : ℕ)
(K : Type u_1)
[Field K]
(p' : ℕ)
[ExpChar K p']
:
ExpChar (CyclotomicPinfField p K) p'
noncomputable instance
CyclotomicPinfField.algebra'
(p : ℕ)
(K : Type u_1)
[Field K]
(R : Type u_2)
[CommRing R]
[Algebra R K]
:
Algebra R (CyclotomicPinfField p K)
Equations
- CyclotomicPinfField.algebra' p K R = inferInstanceAs (Algebra R ↥(IntermediateField.adjoin K {x : SeparableClosure K | ∃ (n : ℕ), x ^ p ^ n = 1}))
instance
CyclotomicPinfField.instIsScalarTower
(p : ℕ)
(K : Type u_1)
[Field K]
(R : Type u_2)
[CommRing R]
[Algebra R K]
:
IsScalarTower R K (CyclotomicPinfField p K)
instance
CyclotomicPinfField.instNoZeroSMulDivisors
(p : ℕ)
(K : Type u_1)
[Field K]
(R : Type u_2)
[CommRing R]
[Algebra R K]
[IsFractionRing R K]
:
instance
CyclotomicPinfField.isCyclotomicExtension
(p : ℕ)
(K : Type u_1)
[Field K]
[NeZero ↑p]
:
IsCyclotomicExtension (Set.range fun (x : ℕ) => p ^ x) K (CyclotomicPinfField p K)
instance
CyclotomicPinfField.hasEnoughRootsOfUnity
(p : ℕ)
(K : Type u_1)
[Field K]
[NeZero ↑p]
(i : ℕ)
:
HasEnoughRootsOfUnity (CyclotomicPinfField p K) (p ^ i)
Some complemenatry results on cyclotomic character #
noncomputable def
continuousCyclotomicCharacter
(p : ℕ)
(K : Type u_1)
[Field K]
(L : Type u_2)
[Field L]
[Algebra K L]
[Fact (Nat.Prime p)]
:
The restriction of cyclotomicCharacter
to L ≃ₐ[K] L
and which is continuous.
Equations
- continuousCyclotomicCharacter p K L = { toMonoidHom := (cyclotomicCharacter L p).comp (MulSemiringAction.toRingAut (L ≃ₐ[K] L) L), continuous_toFun := ⋯ }
Instances For
@[simp]
theorem
continuousCyclotomicCharacter_toMonoidHom
(p : ℕ)
(K : Type u_1)
[Field K]
(L : Type u_2)
[Field L]
[Algebra K L]
[Fact (Nat.Prime p)]
:
(continuousCyclotomicCharacter p K L).toMonoidHom = (cyclotomicCharacter L p).comp (MulSemiringAction.toRingAut (L ≃ₐ[K] L) L)