Documentation

Iwasawalib.FieldTheory.ZpExtension.Cyclotomic

Cyclotomic ℤₚ-extension #

The field $K(\mu_{p^\infty})$ #

def CyclotomicPinfField (p : ) (K : Type u_1) [Field K] :
Type u_1

The field $K(\mu_{p^\infty})$. Internally it is defined to be an IntermediateField K (SeparableClosure K), but please avoid using it in the public interface. Instead, use IsSepClosed.lift to construct a map of it to SeparableClosure K.

Equations
Instances For
    noncomputable instance CyclotomicPinfField.algebra (p : ) (K : Type u_1) [Field K] :
    Equations
    noncomputable instance CyclotomicPinfField.instInhabited (p : ) (K : Type u_1) [Field K] :
    Equations
    instance CyclotomicPinfField.instCharP (p : ) (K : Type u_1) [Field K] (p' : ) [CharP K p'] :
    instance CyclotomicPinfField.instExpChar (p : ) (K : Type u_1) [Field K] (p' : ) [ExpChar K p'] :
    noncomputable instance CyclotomicPinfField.algebra' (p : ) (K : Type u_1) [Field K] (R : Type u_2) [CommRing R] [Algebra R K] :
    Equations
    theorem CyclotomicPinfField.isCyclotomicExtension' (p : ) (K : Type u_1) [Field K] [NeZero p] (s : Set ) (h1 : s {0} Set.range fun (x : ) => p ^ x) (h2 : ∀ (N : ), nN, p ^ n s) :

    Some complemenatry results on cyclotomic character #

    noncomputable def continuousCyclotomicCharacter (p : ) (K : Type u_1) [Field K] (L : Type u_2) [Field L] [Algebra K L] [Fact (Nat.Prime p)] :

    The restriction of cyclotomicCharacter to L ≃ₐ[K] L and which is continuous.

    Equations
    Instances For
      @[simp]
      theorem continuousCyclotomicCharacter_apply (p : ) (K : Type u_1) [Field K] (L : Type u_2) [Field L] [Algebra K L] [Fact (Nat.Prime p)] (f : L ≃ₐ[K] L) :