Formalization of Iwasawa Theory in LꓱꓯN

5 Arithmetic of \({\mathbb {Z}}_p\)-extensions

5.1 The class group of \({\mathbb {Z}}_p\)-extension of a number field

Let \(K\) be a number field, \(p\) be a prime, \(K_\infty /K\) be a \({\mathbb {Z}}_p\)-extension.

Definition 5.1

(i) For each \(n\geq 0\) let \(L_n\) be the \(p^\infty \)-Hilbert class field of \(K_n\). That is, the maximal unramified abelian extension of \(K_n\) of exponent \(p^\infty \).

(ii) Let \(X_n:={\mathrm{Gal}}(L_n/K_n)\cong {\mathrm{Cl}}(K_n)(p)\), the maximal quotient of the class group \({\mathrm{Cl}}(K_n)\) which is \(p^\infty \)-torsion.

Definition 5.2

(i) Let \(L_\infty :=\bigcup _{n\geq 0}L_n=\bigcup _{n\geq 0}L_nK_\infty \), then it is an unramified abelian pro-\(p\) extension of \(K_\infty \), because each \(L_nK_\infty /K_\infty \) is finite unramified abelian \(p\)-extension.

(ii) Let \(L_\infty '\) be the maximal unramified abelian pro-\(p\) extension of \(K_\infty \), that is, the compositum of all finite unramified abelian \(p\)-extensions of \(K_\infty \).

Proposition 5.3

\(L_\infty '=L_\infty \).

Note that \(L_\infty '=L_\infty \) is a Galois extension of \(K\).

Proof

It is easy to see that “\(\supset \)” holds. As for “\(\subset \)”, suppose \(E\) is a finite unramified abelian \(p\)-extension of \(K_\infty \), we want to prove \(E\subset L_\infty \). The proof consists of the following steps:

(1) There exists an integer \(n_0\geq 0\) such that \(E/K_{n_0}\) is Galois.

(2) There exists an integer \(n_1\geq n_0\) such that \({\mathrm{Gal}}(E/K_{n_1})\) is abelian. So \({\mathrm{Gal}}(E/K_{n_1})\cong {\mathrm{Gal}}(K_\infty /K_{n_1})\times G\), where \(G\) is a finite abelian group, corresponding to some \(E_{n_1}/K_{n_1}\) finite abelian extension, so that \(E=K_\infty E_{n_1}\).

(3) There exists an integer \(n_2\geq n_1\) such that \(E_{n_1}K_{n_2}/K_{n_2}\) is a finite unramified abelian \(p\)-extension. Therefore \(E_{n_1}K_{n_2}\subset L_{n_2}\), hence \(E\subset L_{n_2}K_\infty \subset L_\infty \).

Lemma 5.4
#

Suppose \(X\) has rank \(r\) as a \(\Lambda \)-module, then we have

\[ \operatorname{rank}_{{\mathbb {Z}}_p}\left(X/((1+T^{p^n})-1)X\right)=rp^n+O(1) \]

as \(n\to \infty \). This is left as an exercise. For example, if \(X=\Lambda \), then \(r=1\), and \(\operatorname{rank}_{{\mathbb {Z}}_p}\big(X/((1+T^{p^n})-1)X\big)=p^n\).

Proposition 5.5

If \(K\) is any number field, \(K_\infty /K\) is any \({\mathbb {Z}}_p\)-extension, and \({\mathfrak {l}}\) is a prime of \(K\) not lying over \(p\). Then \({\mathfrak {l}}\) is unramified in \(K_\infty /K\).

Proof

Let \(D_{\mathfrak {l}}\) be the decomposition subgroup of \({\mathfrak {l}}\) in \(\Gamma :={\mathrm{Gal}}(K_\infty /K)\). Let \(l=\operatorname{char}({\mathcal{O}}_K/{\mathfrak {l}})\neq p\), then \(K_{\mathfrak {l}}/{\mathbb {Q}}_l\) is a finite extension, and let \((K_\infty )_{\mathfrak {l}}:=\varinjlim (K_n)_{\mathfrak {l}}\), then \(D_{\mathfrak {l}}={\mathrm{Gal}}((K_\infty )_{\mathfrak {l}}/K_{\mathfrak {l}})\) is a subgroup of \({\mathbb {Z}}_p\).

We have \(K_{\mathfrak {l}}\subset K_{\mathfrak {l}}^{\mathrm{unr}}\subset K_{\mathfrak {l}}^{\mathrm{ab}}\), and

\[ {\mathrm{Gal}}(K_{\mathfrak {l}}^{\mathrm{unr}}/K_{\mathfrak {l}})\cong \widehat{\mathbb {Z}}=\prod _{q\text{ prime}}{\mathbb {Z}}_q. \]

So \(K_{\mathfrak {l}}\) has at least one \({\mathbb {Z}}_p\)-extension, i.e. the unique unramified \({\mathbb {Z}}_p\)-extension. If there are other \({\mathbb {Z}}_p\)-extensions of \(K_{\mathfrak {l}}\), then there exists a Galois extension of \(K_{\mathfrak {l}}\) with Galois group isomorphic to \({\mathbb {Z}}_p^2\).

However, \({\mathrm{Gal}}(K_{\mathfrak {l}}^{\mathrm{ab}}/K_{\mathfrak {l}}^{\mathrm{unr}})\) doesn’t have a quotient isomorphic to \({\mathbb {Z}}_p\), because by local class field theory, \({\mathrm{Gal}}(K_{\mathfrak {l}}^{\mathrm{ab}}/K_{\mathfrak {l}}^{\mathrm{unr}})\cong {\mathcal{O}}_{K_{\mathfrak {l}}}^\times \cong (\text{a finite group})\times {\mathbb {Z}}_l^{[K_{\mathfrak {l}}:{\mathbb {Q}}_l]}\) which is a finite group times a pro-\(l\) group, obviously it doesn’t have a quotient isomorphic to \({\mathbb {Z}}_p\). So there is only one \({\mathbb {Z}}_p\)-extension of \(K_{\mathfrak {l}}\), note that \((K_\infty )_{\mathfrak {l}}/K_{\mathfrak {l}}\) is either trivial or a \({\mathbb {Z}}_p\)-extension, in both cases it must be contained in \(K_{\mathfrak {l}}^{\mathrm{unr}}\).

Suppose \(K\) is any number field, and \(K_\infty /K\) is any \({\mathbb {Z}}_p\)-extension. Let \(L_\infty \) be the maximal unramified abelian pro-\(p\) extension of \(K_\infty \), let \(X_\infty :={\mathrm{Gal}}(L_\infty /K_\infty )\) which is a \(\Lambda \)-module, where \(\Lambda :={\mathbb {Z}}_p[[\Gamma ]]\), isomorphic to \({\mathbb {Z}}_p[[T]]\) by choosing a topological generator \(\gamma \) of \(\Gamma \), and maps \(T\) to \(\gamma -1\). Then \(X_\infty \) is a finitely generated torsion \(\Lambda \)-module.

Proof

Consider \({\mathrm{Gal}}(K_\infty /K_n)=\Gamma ^{p^n}\) with topological generator \(\gamma ^{p^n}\). Let \(E_n\) be the maximal abelian extension of \(K_n\) contained in \(L_\infty \), so that \({\mathrm{Gal}}(L_\infty /E_n)={\mathrm{Gal}}(L_\infty /K_n)' =(\gamma ^{p^n}-1)X_\infty \). Note that \(X_\infty /TX_\infty \cong {\mathrm{Gal}}(E_0/K_\infty )\) is a finitely generated \({\mathbb {Z}}_p\)-module, so by Nakayama lemma (Lemma 2.5) we know that \(X_\infty \) is finitely generated \(\Lambda \)-module.

Recall that if \(r=\operatorname{rank}_\Lambda X_\infty \), then \(\operatorname{rank}_{{\mathbb {Z}}_p}\left(X_\infty /(\gamma ^{p^n}-1)X_\infty \right)=rp^n+O(1)\) as \(n\to \infty \) (Lemma 5.4). So in order to prove \(X_\infty \) is torsion (i.e. \(r=0\)), we only need to prove \(\operatorname{rank}_{{\mathbb {Z}}_p}\left(X_\infty /(\gamma ^{p^n}-1)X_\infty \right)\) is bounded.

Let \({\mathfrak {p}}_1,\cdots ,{\mathfrak {p}}_t\) be the primes of \(K\) which are ramified in \(K_\infty /K\). Then \(t\) is finite (by Proposition 5.5), and number of primes of \(K_\infty \) lying over \({\mathfrak {p}}_1,\cdots ,{\mathfrak {p}}_t\) is also finite, because for each \(i\), the index \([\Gamma :D_{{\mathfrak {p}}_i}]\) is finite. So let \(s_n\) be the number of primes of \(K_n\) which are ramified in \(K_\infty /K_n\), then \(s_n\) is bounded.

Consider \(E_n/K_n\). Recall that \(L_n\) is the \(p\)-Hilbert class field of \(K_n\). Then \(L_n\subset L_\infty \), \(K_\infty \subset L_\infty \), so \(L_nK_\infty \subset E_n\). Let \(I_1,\cdots ,I_{s_n}\) be the inertia subgroups of \({\mathrm{Gal}}(E_n/K_n)\) for the ramified primes. For \(1\leq j\leq s_n\), \(I_j\cap {\mathrm{Gal}}(E_n/K_\infty )=\{ 1\} \), because \(E_n/K_\infty \) is unramified. Therefore \(I_j\) maps injectively to a closed subgroup of \(\Gamma ^{p^n}\) via the map \({\mathrm{Gal}}(E_n/K_n)\to {\mathrm{Gal}}(K_\infty /K_n)\), in particular, \(I_j\) is isomorphic to \({\mathbb {Z}}_p\).

Now we come to the key point. Let \(I:=I_1\cdots I_{s_n}\subset {\mathrm{Gal}}(E_n/K_n)\), then \(\operatorname{rank}_{{\mathbb {Z}}_p}I\leq s_n\), and \(E_n^I\) is the maximal unramified abelian pro-\(p\) extension of \(K_n\), so \(E_n^I=L_n\), hence \(\operatorname{rank}_{{\mathbb {Z}}_p}{\mathrm{Gal}}(E_n/K_n)\leq s_n\), because \({\mathrm{Gal}}(L_n/K_n)\cong {\mathrm{Cl}}(K_n)(p)\) is a finite group. Therefore \(\operatorname{rank}_{{\mathbb {Z}}_p}{\mathrm{Gal}}(E_n/K_\infty )\leq s_n-1\), because \({\mathrm{Gal}}(K_\infty /K_n)=\Gamma ^{p^n}\) is of \({\mathbb {Z}}_p\)-rank \(1\). Note that \({\mathrm{Gal}}(E_n/K_\infty )\cong X_\infty /(\gamma ^{p^n}-1)X_\infty \), so \(\operatorname{rank}_{{\mathbb {Z}}_p}\left(X_\infty /(\gamma ^{p^n}-1)X_\infty \right)\) is bounded.

5.2 Recover the finite level of class group from infinite level

Back to \(K_n\) and \(K_\infty \). Recall that \(X_\infty :={\mathrm{Gal}}(L_\infty /K_\infty )=\varprojlim {\mathrm{Gal}}(L_n/K_n)\), and \(X_n:={\mathrm{Gal}}(L_n/K_n)\cong {\mathrm{Cl}}(K_n)(p)\).

Let \(\Gamma :={\mathrm{Gal}}(K_\infty /K)\cong {\mathbb {Z}}_p\), choose a topological generator \(\gamma \) of \(\Gamma \) (or equivalently, \(\gamma \in \Gamma \) such that \(\gamma |_{K_1}\) is nontrivial).

Proposition 5.7

(This is incorrect ...) For each \(n\geq 0\) there is an isomorphism \(X_\infty /(\gamma ^{p^n}-1)X_\infty \xrightarrow \sim X_n\).

Proof

Let \(G:={\mathrm{Gal}}(L_\infty /K)\). We claim that \((\gamma -1)X_\infty \) is a closed normal subgroup of \(G\) and \(X_\infty /(\gamma -1)X_\infty \cong X_0={\mathrm{Cl}}(K)(p)\). We have a group extension

\[ 0\to X_\infty \to G\to \Gamma \to 1, \]

which induces

\[ 0\to X_\infty /(\gamma -1)X_\infty \to G/(\gamma -1)X_\infty \to \Gamma \to 1, \]

so \(G/(\gamma -1)X_\infty \) is abelian, and \((\gamma -1)X_\infty \) is a closed normal subgroup. The proof of Proposition 5.8 can be easily modified to show that \((\gamma -1)X_\infty =G'\). Let \(E=L_\infty ^{G'}\) be the maximal abelian extension of \(K\) contained in \(L_\infty \). Let \(I_{\mathfrak {P}}\) be the inertia subgroup of \({\mathrm{Gal}}(E/K)\) for a prime \({\mathfrak {P}}\mid {\mathfrak {p}}\), then \(L_0=E^{I_{\mathfrak {P}}}\). Let \(H={\mathrm{Gal}}(E/K_\infty )\) (so that \(K_\infty =E^H\)), then \(L_0\cap K_\infty =K\), \(H\cap I_{\mathfrak {P}}=\{ 1\} \), so \(E=L_0K_\infty \), and \({\mathrm{Gal}}(E/K_\infty )\xrightarrow \sim {\mathrm{Gal}}(L_0/K)\) is a natural isomorphism. Hence we conclude that \(X_\infty /(\gamma -1)X_\infty \xrightarrow \sim X_0\).

In general, consider \(L_n/K_n\), the \(p\)-Hilbert class field of \(K_n\), so that \({\mathrm{Gal}}(L_n/K_n)=:X_n\cong {\mathrm{Cl}}(K_n)(p)\). We have \({\mathrm{Gal}}(K_\infty /K_n)\cong \Gamma ^{p^n}\cong p^n{\mathbb {Z}}_p\) with topological generator \(\gamma ^{p^n}\). We have \(K_\infty /K_n\) is ramified at only one place and is totally ramified. So similarly, we get \(X_\infty /(\gamma ^{p^n}-1)X_\infty \xrightarrow \sim X_n\).

We state a group theory result. Suppose \({\mathcal{G}}\) is any group, \({\mathcal{X}}\) is a normal abelian subgroup of \({\mathcal{G}}\). Then \({\mathcal{G}}/{\mathcal{X}}\) acts on \({\mathcal{X}}\) as follows: if \(\sigma \in {{\mathcal{G}}/{\mathcal{X}}}\), lift \(\sigma \) to an element \(\widetilde\sigma \) in \({\mathcal{G}}\). Then define for all \(x\in {\mathcal{X}}\), \(\sigma (x):=\widetilde\sigma x\widetilde\sigma ^{-1}\). Note that \(\sigma (x)x^{-1}=\widetilde\sigma x\widetilde{\sigma }^{-1}x^{-1}\in {\mathcal{G}}'\).

Assume \({\mathcal{G}}/{\mathcal{X}}\) is cyclic with a generator \(g\), then \({\mathcal{G}}'=\{ g(x)x^{-1}\mid x\in {\mathcal{X}}\} \). We write \({\mathcal{X}}\) additively, then \(g(x)x^{-1}\) becomes \(g(x)-x=(g-1)x\).

If we view \(g-1\) as an element in \({\mathbb {Z}}[{\mathcal{G}}/{\mathcal{X}}]\), and view \({\mathcal{X}}\) as a \({\mathbb {Z}}[{\mathcal{G}}/{\mathcal{X}}]\)-module, then \(\{ g(x)-x\mid x\in {\mathcal{X}}\} =(g-1){\mathcal{X}}\) is a \({\mathbb {Z}}[{\mathcal{G}}/{\mathcal{X}}]\)-submodule of \({\mathcal{X}}\). Hence \((g-1){\mathcal{X}}\) is a normal subgroup of \({\mathcal{G}}\).

Proposition 5.8

\({\mathcal{G}}'=(g-1){\mathcal{X}}\).

Proof

“\(\supset \)” is trivial. As for “\(\subset \)”, we have an exact sequence

\[ 0\rightarrow {\mathcal{X}}/{(g-1){\mathcal{X}}}\rightarrow {\mathcal{G}}/{(g-1){\mathcal{X}}}\rightarrow {\mathcal{G}}/{\mathcal{X}}\rightarrow 0, \]

and \({\mathcal{G}}/(g-1){\mathcal{X}}\) is a central extension of \({\mathcal{G}}/{\mathcal{X}}\) (which is cyclic) by \({\mathcal{X}}/{(g-1){\mathcal{X}}}\), so it is abelian, so \({\mathcal{G}}'\subset (g-1){\mathcal{X}}\).