A Known results in mathlib
A.1 Rings
Commutative ring with unit CommRing
Field Field
assertion that a ring is a field IsField
assertion that a ring is an integral domain IsDomain
assertion that a ring is PID: IsDomain + IsPrincipalIdealRing
assertion that a ring is UFD: IsDomain + UniqueFactorizationMonoid
Noetherian ring IsNoetherianRing
finitely many minimal prime ideals minimalPrimes.finite_of_isNoetherianRing
finitely many minimal prime over-ideals Ideal.finite_minimalPrimes_of_isNoetherianRing
Artin ring IsArtinianRing
it is also Noetherian instIsNoetherianRingOfIsArtinianRing (instance, shouldn’t need to call directly)
Characteristic of a ring ringChar, exponential characteristic ringExpChar
Krull dimension of a ring ringKrullDim
assertion that a ring is of Krull dimension \(\leq n\) Ring.KrullDimLE
assertion that a ring is of Krull dimension \(\leq 1\) Ring.DimensionLEOne
A.2 Ideals
Ideal of a ring Ideal
assertion that an ideal is principal Submodule.IsPrincipal
assertion that an ideal is a prime ideal Ideal.IsPrime
assertion that an ideal is a maximal ideal Ideal.IsMaximal
Ideal.Quotient.field (instance, shouldn’t need to call directly)
Height of an ideal Ideal.height, height of a prime ideal Ideal.primeHeight
assertion that an ideal is the whole ring or of finite height Ideal.FiniteHeight
the
Type
of prime ideals of a ring \({\mathrm{Spec}}(R)\) PrimeSpectrumset of minimal primes minimalPrimes, set of minimal prime over-ideals Ideal.minimalPrimes
A.3 Modules
Support of a module \({\mathrm{Supp}}(M)\) Module.support
Annihilator of a module \({\mathrm{Ann}}(M)\) Module.annihilator
\(M^*=\operatorname{Hom}_{\mathbb {Z}}(M,{\mathbb {Q}}/{\mathbb {Z}})\) CharacterModule
Associated primes of a module \(\operatorname{Ass}(M)\) associatedPrimes
Finitely generated module Module.Finite
Free module Module.Free
Projective module Module.Projective
Injective module Module.Injective
Flat module Module.Flat
Torsion module Module.IsTorsion
Torsion submodule Submodule.torsion
Torsion-free module Submodule.torsion
R M = ⊥
Noetherian module IsNoetherian
Artin module IsArtinian
assertion that a module is of finite length IsFiniteLength
in the statement of theorems use IsNoetherian + IsArtinian instead
if and only if exists composition series isFiniteLength_iff_exists_compositionSeries
length of a module \(\ell _A(M)\) Module.length
composition series CompositionSeries
usage:
∃ (s :
CompositionSeries(
SubmoduleR M)),
RelSeries.heads = ⊥ ∧
RelSeries.lasts = ⊤
A.4 Number theory
assertion that a field is a number field (i.e. finite extension of \({\mathbb {Q}}\)) NumberField
ring of integers \({\mathcal{O}}_K\) NumberField.RingOfIntegers
assertion that a ring is a Dedekind domain IsDedekindDomain
unique factorization of ideals Ideal.uniqueFactorizationMonoid (instance, shouldn’t need to call directly)
fraction ideals FractionalIdeal
usage: if \(R\) is a domain, \(K\) is fraction field of \(R\), then the
Type
of fraction ideals in \(K\) is:\(\operatorname{ord}_{\mathfrak {p}}({\mathfrak {a}})\) FractionalIdeal.count
ideal class group ClassGroup
finite NumberField.RingOfIntegers.instFintypeClassGroup (instance, shouldn’t need to call directly)
class number NumberField.classNumber
places of a number field \(K\): AbsoluteValue
K ℝ
, NumberField.placeinfinite places NumberField.InfinitePlace
real and complex places NumberField.InfinitePlace.IsReal, NumberField.InfinitePlace.IsComplex
\(r_1,r_2\) NumberField.InfinitePlace.nrRealPlaces, NumberField.InfinitePlace.nrComplexPlaces
\(r_1+r_2-1\) NumberField.Units.rank
Dirichlet unit theorem NumberField.Units.rank_modTorsion
assertion that a field extension is abelian #23669
assertion that a field extension is cyclotomic IsCyclotomicExtension
cyclotomic field \(K(\mu _n)\) CyclotomicField
\(p\)-adic cyclotomic character: if \(\mu _{p^\infty }\subset L\) then \(\chi _{\mathrm{cyc}}:{\mathrm{Aut}}(L)\to {\mathbb {Z}}_p^\times \) #21934
- Nek06
J. Nekovář. Selmer complexes. Astérisque No. 310 (2006), viii+559 pp.
- NSW08
J. Neukirch, A. Schmidt, K. Wingberg. Cohomology of number fields. Second edition. Grundlehren Math. Wiss., 323. Springer-Verlag, Berlin, 2008. xvi+825 pp.
- Was97
L. C. Washington. Introduction to cyclotomic fields. Second edition. Grad. Texts in Math., 83. Springer-Verlag, New York, 1997. xiv+487 pp.