Documentation

Iwasawalib.Algebra.CompleteGroupAlgebra.Basic

Complete group algebras #

In this file we state basic definitions of complete group algebras.

We introduce the scoped notation R[ˣG] for the MonoidAlgebra.

If R is a commutative semiring, G is a topological group, s is a subset of open normal subgroups, then CompleteGroupAlgebra R G s is defined to be the Type corresponding to the subalgebra (CompleteGroupAlgebra.toSubalgebra R G s) of the background ring Π N ∈ s, R[ˣG/N] (CompleteGroupAlgebra.BackgroundRing R G s), consisting of elements satisfy certain compatibility conditions. Mathematically, it is the inverse limit of R[ˣG/N] as N runs over elements in s. We don't use category theory packages here as currently AlgebraCat doesn't support Semiring.

We introduce the scoped notationR⟦ˣG⟧ for the CompleteGroupAlgebra R G Set.univ, namely, the N is allowed to be all open normal subgroups.

The natural injection from CompleteGroupAlgebra R G s to the background ring is Subalgebra.val (CompleteGroupAlgebra.toSubalgebra R G s). Its injectivity is Subtype.val_injective, hopefully Lean will figure out what the implicit argument is. If x is an element of CompleteGroupAlgebra R G s, its image in the background ring is just x.1, and the proof that it satisfies the compatibility conditions is just x.2.

Two elements in CompleteGroupAlgebra R G s are equal, if and only if their images in the background ring are equal, if and only if their images in R[ˣG/N] are equal for all N ∈ s. To achieve this, one may use tactic ext1, resp. ext N ⟨hN⟩ : 3.

If N ∈ s, CompleteGroupAlgebra.proj R G s N is the natural projection map from CompleteGroupAlgebra R G s to R[ˣG/N]. If x is an element of CompleteGroupAlgebra R G s, then its image under this map is just x.1 N (CompleteGroupAlgebra.proj_apply).

In general, if M is a normal subgroup such that there exists some N ∈ s such that N ≤ M, then CompleteGroupAlgebra.projOfExistsLE is a map from CompleteGroupAlgebra R G s to R[ˣG/M], defined by using a random N ∈ s such that N ≤ M.

...

The universal property of R⟦ˣG⟧ is that, if there is a family of maps S → R[ˣG/N] satisfying compatibility conditions, then they lift to a map S → R⟦ˣG⟧ (CompleteGroupAlgebra.lift), and such lift is unique (CompleteGroupAlgebra.eq_lift_of_proj_comp_eq).

...

Currently we only defined the multiplicative version (i.e. no CompleteAddGroupAlgebra yet).

Things should go to mathlib #

The monoid algebra over a semiring k generated by the monoid G. It is the type of finite formal k-linear combinations of terms of G, endowed with the convolution product.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    noncomputable def MonoidAlgebra.linearEquivOfSubsingleton (R : Type u_1) (G : Type u_2) [Semiring R] [Inhabited G] [Subsingleton G] :

    If G has only one element, then R[ˣG] is just R.

    Equations
    Instances For
      noncomputable def MonoidAlgebra.algEquivOfSubsingleton (R : Type u_1) (G : Type u_2) [CommSemiring R] [Monoid G] [Subsingleton G] :

      If G has only one element, then R[ˣG] is just R.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        Equations

        Definition of complete group algebra #

        @[reducible, inline]
        abbrev CompleteGroupAlgebra.BackgroundRing (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) :
        Type (max u_2 u_1)

        The background ring Π N ∈ s, R[ˣG/N] of CompleteAddGroupAlgebra.

        Equations
        Instances For
          noncomputable def CompleteGroupAlgebra.toSubalgebra (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) :

          The complete group algebra as a subalgebra of BackgroundRing.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem CompleteGroupAlgebra.mem_toSubalgebra (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) {x : BackgroundRing R G s} :
            x toSubalgebra R G s ∀ ⦃N₁ N₂ : OpenNormalSubgroup G⦄ (hN₁ : N₁ s) (hN₂ : N₂ s) (hle : N₁ N₂), (MonoidAlgebra.mapDomainAlgHom R R (QuotientGroup.map (↑N₁.toOpenSubgroup) (↑N₂.toOpenSubgroup) (MonoidHom.id G) hle)) (x { down := hN₁ }) = x { down := hN₂ }
            @[reducible, inline]
            abbrev CompleteGroupAlgebra (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) :
            Type (max u_1 u_2)

            The CompleteGroupAlgebra as a Type. The scoped notation R⟦ˣG⟧ is CompleteGroupAlgebra R G Set.univ.

            Equations
            Instances For

              The CompleteGroupAlgebra as a Type. The scoped notation R⟦ˣG⟧ is CompleteGroupAlgebra R G Set.univ.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                Projection maps #

                noncomputable def CompleteGroupAlgebra.proj (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) {N : OpenNormalSubgroup G} (hN : N s) :

                The proj is the natural map from CompleteGroupAlgebra R G s to R[ˣG/N] for N ∈ s.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem CompleteGroupAlgebra.proj_apply (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) {N : OpenNormalSubgroup G} (hN : N s) (x : CompleteGroupAlgebra R G s) :
                  (proj R G s hN) x = x { down := hN }
                  theorem CompleteGroupAlgebra.mapDomainAlgHom_comp_proj (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) {N : OpenNormalSubgroup G} (hN : N s) {N' : OpenNormalSubgroup G} (hN' : N' s) (hle : N N') :
                  theorem CompleteGroupAlgebra.mapDomainAlgHom_comp_proj_eq_mapDomainAlgHom_comp_proj (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) {N : OpenNormalSubgroup G} (hN : N s) {N' : OpenNormalSubgroup G} (hN' : N' s) {N'' : Subgroup G} [N''.Normal] (hle : N.toOpenSubgroup N'') (hle' : N'.toOpenSubgroup N'') (hexists : Ms, M N M N') :
                  noncomputable def CompleteGroupAlgebra.projOfExistsLE (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) (M : Subgroup G) [M.Normal] (hM : Ns, N.toOpenSubgroup M) :

                  If M is a normal subgroup such that there exists some N ∈ s such that N ≤ M, then projOfExistsLE is a map from CompleteGroupAlgebra R G s to R[ˣG/M], defined by using a random N ∈ s such that N ≤ M.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem CompleteGroupAlgebra.projOfExistsLE_eq_proj (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) {M : OpenNormalSubgroup G} (hM : M s) :
                    projOfExistsLE R G s M.toOpenSubgroup = proj R G s hM

                    If M ∈ s, then the projOfExistsLE for M is equal to the proj for M.

                    The definition of projOfExistsLE is independent of the choice of N ∈ s such that N ≤ M, provided that s is directed, i.e. for any N₁, N₂ ∈ s there exists N₃ ∈ s such that N₃ ≤ N₁ and N₃ ≤ N₂.

                    theorem CompleteGroupAlgebra.mapDomainAlgHom_comp_projOfExistsLE (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) (M : Subgroup G) [M.Normal] (hM : Ns, N.toOpenSubgroup M) (M' : Subgroup G) [M'.Normal] (hle : M M') (hs : DirectedOn GE.ge s) :
                    noncomputable def CompleteGroupAlgebra.augmentation (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) (hs : s.Nonempty) :

                    If s is not empty, then augmentation is a map from CompleteGroupAlgebra R G s to R.

                    Equations
                    Instances For
                      theorem CompleteGroupAlgebra.augmentation_apply_of_top_mem (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) (x : CompleteGroupAlgebra R G s) (h : s) :
                      (augmentation R G s ) x = (x { down := h }) 1

                      Universal property of complete group algebra #

                      noncomputable def CompleteGroupAlgebra.lift (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) {S : Type u_3} [Semiring S] [Algebra R S] (f : N : OpenNormalSubgroup G⦄ → N sS →ₐ[R] MonoidAlgebra R (G N.toOpenSubgroup)) (hf : ∀ ⦃N₁ N₂ : OpenNormalSubgroup G⦄ (hN₁ : N₁ s) (hN₂ : N₂ s) (hle : N₁ N₂), (MonoidAlgebra.mapDomainAlgHom R R (QuotientGroup.map (↑N₁.toOpenSubgroup) (↑N₂.toOpenSubgroup) (MonoidHom.id G) hle)).comp (f hN₁) = f hN₂) :

                      If a family of maps S → R[ˣG/N] for N ∈ S satisfy compatibility conditions, then they lift to a map S → CompleteGroupAlgebra R G s.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        theorem CompleteGroupAlgebra.lift_apply_coe (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) {S : Type u_3} [Semiring S] [Algebra R S] {f : N : OpenNormalSubgroup G⦄ → N sS →ₐ[R] MonoidAlgebra R (G N.toOpenSubgroup)} {hf : ∀ ⦃N₁ N₂ : OpenNormalSubgroup G⦄ (hN₁ : N₁ s) (hN₂ : N₂ s) (hle : N₁ N₂), (MonoidAlgebra.mapDomainAlgHom R R (QuotientGroup.map (↑N₁.toOpenSubgroup) (↑N₂.toOpenSubgroup) (MonoidHom.id G) hle)).comp (f hN₁) = f hN₂} (x : S) {N : OpenNormalSubgroup G} (hN : N s) :
                        ((lift R G s f hf) x) { down := hN } = (f hN) x
                        theorem CompleteGroupAlgebra.proj_comp_lift (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) {S : Type u_3} [Semiring S] [Algebra R S] {f : N : OpenNormalSubgroup G⦄ → N sS →ₐ[R] MonoidAlgebra R (G N.toOpenSubgroup)} {hf : ∀ ⦃N₁ N₂ : OpenNormalSubgroup G⦄ (hN₁ : N₁ s) (hN₂ : N₂ s) (hle : N₁ N₂), (MonoidAlgebra.mapDomainAlgHom R R (QuotientGroup.map (↑N₁.toOpenSubgroup) (↑N₂.toOpenSubgroup) (MonoidHom.id G) hle)).comp (f hN₁) = f hN₂} {N : OpenNormalSubgroup G} (hN : N s) :
                        (proj R G s hN).comp (lift R G s f hf) = f hN
                        theorem CompleteGroupAlgebra.eq_lift_of_proj_comp_eq (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) {S : Type u_3} [Semiring S] [Algebra R S] {f : N : OpenNormalSubgroup G⦄ → N sS →ₐ[R] MonoidAlgebra R (G N.toOpenSubgroup)} {hf : ∀ ⦃N₁ N₂ : OpenNormalSubgroup G⦄ (hN₁ : N₁ s) (hN₂ : N₂ s) (hle : N₁ N₂), (MonoidAlgebra.mapDomainAlgHom R R (QuotientGroup.map (↑N₁.toOpenSubgroup) (↑N₂.toOpenSubgroup) (MonoidHom.id G) hle)).comp (f hN₁) = f hN₂} (g : S →ₐ[R] CompleteGroupAlgebra R G s) (hg : ∀ ⦃N : OpenNormalSubgroup G⦄ (hN : N s), (proj R G s hN).comp g = f hN) :
                        g = lift R G s f hf

                        The lift map S → CompleteGroupAlgebra R G s is unique.

                        The natural map from R[ˣG] to CompleteGroupAlgebra R G s.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          If s is directed and t is coinitial for s, then there is a natural map from CompleteGroupAlgebra R G s to CompleteGroupAlgebra R G t.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem CompleteGroupAlgebra.algHomOfCoinitial_comp (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s t u : Set (OpenNormalSubgroup G)) (hs : DirectedOn GE.ge s) (hts : IsCoinitialFor t s) (ht : DirectedOn GE.ge t) (hut : IsCoinitialFor u t) :
                            (algHomOfCoinitial R G t u ht hut).comp (algHomOfCoinitial R G s t hs hts) = algHomOfCoinitial R G s u hs

                            If s, t are directed and are coinitial for each other, then there is a natural isomorphism of CompleteGroupAlgebra R G s and CompleteGroupAlgebra R G t.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem CompleteGroupAlgebra.coe_algEquivOfCoinitial (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s t : Set (OpenNormalSubgroup G)) (hs : DirectedOn GE.ge s) (hts : IsCoinitialFor t s) (ht : DirectedOn GE.ge t) (hst : IsCoinitialFor s t) :
                              (algEquivOfCoinitial R G s t hs hts ht hst) = algHomOfCoinitial R G s t hs hts
                              @[simp]
                              theorem CompleteGroupAlgebra.algEquivOfCoinitial_symm (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s t : Set (OpenNormalSubgroup G)) (hs : DirectedOn GE.ge s) (hts : IsCoinitialFor t s) (ht : DirectedOn GE.ge t) (hst : IsCoinitialFor s t) :
                              (algEquivOfCoinitial R G s t hs hts ht hst).symm = algEquivOfCoinitial R G t s ht hst hs hts
                              theorem CompleteGroupAlgebra.coe_algEquivOfCoinitial_symm (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s t : Set (OpenNormalSubgroup G)) (hs : DirectedOn GE.ge s) (hts : IsCoinitialFor t s) (ht : DirectedOn GE.ge t) (hst : IsCoinitialFor s t) :
                              (algEquivOfCoinitial R G s t hs hts ht hst).symm = algHomOfCoinitial R G t s ht hst
                              @[simp]
                              theorem CompleteGroupAlgebra.algEquivOfCoinitial_apply (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s t : Set (OpenNormalSubgroup G)) (hs : DirectedOn GE.ge s) (hts : IsCoinitialFor t s) (ht : DirectedOn GE.ge t) (hst : IsCoinitialFor s t) (x : CompleteGroupAlgebra R G s) :
                              (algEquivOfCoinitial R G s t hs hts ht hst) x = (algHomOfCoinitial R G s t hs hts) x
                              theorem CompleteGroupAlgebra.algEquivOfCoinitial_symm_apply (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s t : Set (OpenNormalSubgroup G)) (hs : DirectedOn GE.ge s) (hts : IsCoinitialFor t s) (ht : DirectedOn GE.ge t) (hst : IsCoinitialFor s t) (x : CompleteGroupAlgebra R G t) :
                              (algEquivOfCoinitial R G s t hs hts ht hst).symm x = (algHomOfCoinitial R G t s ht hst) x

                              Elements of form r • [g] #

                              noncomputable def CompleteGroupAlgebra.single (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) (g : G) :

                              The linear map which maps r to r • [g] in R⟦ˣG⟧.

                              Equations
                              Instances For
                                @[simp]
                                theorem CompleteGroupAlgebra.single_apply_coe (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) (g : G) (r : R) {N : OpenNormalSubgroup G} (hN : N s) :
                                ((single R G s g) r) { down := hN } = MonoidAlgebra.single (↑g) r
                                theorem CompleteGroupAlgebra.one_def (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) :
                                1 = (single R G s 1) 1
                                @[simp]
                                theorem CompleteGroupAlgebra.projOfExistsLE_single (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) (M : Subgroup G) [M.Normal] (hM : Ns, N.toOpenSubgroup M) (g : G) (r : R) :
                                (projOfExistsLE R G s M hM) ((single R G s g) r) = MonoidAlgebra.single (↑g) r
                                @[simp]
                                theorem CompleteGroupAlgebra.augmentation_single (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) (hs : s.Nonempty) (g : G) (r : R) :
                                (augmentation R G s hs) ((single R G s g) r) = r
                                @[simp]
                                theorem CompleteGroupAlgebra.ofMonoidAlgebra_single (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s : Set (OpenNormalSubgroup G)) (g : G) (r : R) :
                                (ofMonoidAlgebra R G s) (MonoidAlgebra.single g r) = (single R G s g) r
                                @[simp]
                                theorem CompleteGroupAlgebra.algHomOfCoinitial_single (R : Type u_1) [CommSemiring R] (G : Type u_2) [Group G] [TopologicalSpace G] (s t : Set (OpenNormalSubgroup G)) (hs : DirectedOn GE.ge s) (hts : IsCoinitialFor t s) (g : G) (r : R) :
                                (algHomOfCoinitial R G s t hs hts) ((single R G s g) r) = (single R G t g) r