Documentation

Iwasawalib.FieldTheory.IntermediateField.MaximalAbelian

Maximal abelian subextension #

Maximal abelian subextension #

The maximal abelian subextension of K / F is the compositum of all abelian subextension of K / F.

Equations
Instances For
    def IntermediateField.extendScalars' {F : Type u_1} {K : Type u_2} [Field F] [Field K] {L : Type u_3} [Field L] [Algebra F L] [Algebra K L] (E : IntermediateField F L) (algebra_map_mem : ∀ (x : K), (algebraMap K L) x E) :

    TODO: adhoc

    Equations
    Instances For
      @[simp]
      theorem IntermediateField.coe_extendScalars' {F : Type u_1} {K : Type u_2} [Field F] [Field K] {L : Type u_3} [Field L] [Algebra F L] [Algebra K L] (E : IntermediateField F L) (algebra_map_mem : ∀ (x : K), (algebraMap K L) x E) :
      (E.extendScalars' algebra_map_mem) = E
      @[simp]
      theorem IntermediateField.extendScalars'_toSubfield {F : Type u_1} {K : Type u_2} [Field F] [Field K] {L : Type u_3} [Field L] [Algebra F L] [Algebra K L] (E : IntermediateField F L) (algebra_map_mem : ∀ (x : K), (algebraMap K L) x E) :
      (E.extendScalars' algebra_map_mem).toSubfield = E.toSubfield
      @[simp]
      theorem IntermediateField.mem_extendScalars' {F : Type u_1} {K : Type u_2} [Field F] [Field K] {L : Type u_3} [Field L] [Algebra F L] [Algebra K L] (E : IntermediateField F L) (algebra_map_mem : ∀ (x : K), (algebraMap K L) x E) (x : L) :
      x E.extendScalars' algebra_map_mem x E
      @[simp]
      theorem IntermediateField.extendScalars'_restrictScalars {F : Type u_1} {K : Type u_2} [Field F] [Field K] [Algebra F K] {L : Type u_3} [Field L] [Algebra F L] [Algebra K L] (E : IntermediateField F L) (algebra_map_mem : ∀ (x : K), (algebraMap K L) x E) [IsScalarTower F K L] :
      restrictScalars F (E.extendScalars' algebra_map_mem) = E
      noncomputable def IntermediateField.autEquivAutMapMap {F : Type u_3} {L : Type u_4} [Field F] [Field L] [Algebra F L] {K H : IntermediateField F L} (hle : K H) [IsGalois F L] [IsGalois K (extendScalars hle)] (σ : Gal(L/F)) :
      Gal((extendScalars hle)/K) ≃* Gal((extendScalars )/(map (↑σ) K))

      If K ≤ H are intermediate fields of L / F, σ ∈ Gal(L/F), then there is a natural isomorphism between Gal(H/K) and Gal(σ(H)/σ(K)) given by conjugation by σ.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        noncomputable def IntermediateField.autEquivAutMapOfIsGalois {F : Type u_3} {L : Type u_4} [Field F] [Field L] [Algebra F L] {K H : IntermediateField F L} (hle : K H) [IsGalois F L] [IsGalois K (extendScalars hle)] [IsGalois F K] (σ : Gal(L/F)) :
        Gal((extendScalars hle)/K) ≃* Gal((extendScalars )/K)

        Version of autEquivAutMapMap with K / F Galois.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem IntermediateField.isGalois_maximalAbelianExtension_of_isGalois (F : Type u_1) (K : Type u_2) [Field F] [Field K] [Algebra F K] (L : Type u_3) [Field L] [Algebra F L] [Algebra K L] [IsScalarTower F K L] [IsGalois F L] [IsGalois F K] :

          If L / K / F is a field extension tower, such that L / F and K / F are Galois, then H / F is also Galois, where H is the maximal abelian subextension of L / K.

          Maximal abelian p-subextension #

          The maximal abelian p-subextension of K / F is the compositum of all abelian subextension of K / F whose degree is a power of p.

          Equations
          Instances For
            theorem IntermediateField.le_maximalAbelianPExtension (F : Type u_1) (K : Type u_2) [Field F] [Field K] [Algebra F K] (p : ) (E : IntermediateField F K) [IsAbelianGalois F E] (h : ∃ (n : ), Module.finrank F E = p ^ n) :
            theorem IntermediateField.isGalois_maximalAbelianPExtension_of_isGalois (F : Type u_1) (K : Type u_2) [Field F] [Field K] [Algebra F K] (L : Type u_3) [Field L] [Algebra F L] [Algebra K L] [IsScalarTower F K L] [IsGalois F L] [IsGalois F K] (p : ) :

            If L / K / F is a field extension tower, such that L / F and K / F are Galois, then H / F is also Galois, where H is the maximal abelian p-subextension of L / K.