Maximal unramified abelian p-extension Lₙ / Kₙ in a ℤₚ-extension tower K∞ / K #
noncomputable def
MvZpExtension.Ln
{p : ℕ}
[Fact (Nat.Prime p)]
{ι : Type u_1}
{K : Type u_2}
{Kinf : Type u_3}
[Finite ι]
[Field K]
[Field Kinf]
[Algebra K Kinf]
[IsGalois K Kinf]
(H : MvZpExtension p ι K Kinf)
(n : ℕ)
:
IntermediateField (↥(H.Kn n)) (NumberField.HilbertClassField ↥(H.Kn n))
The maximal unramified abelian p-extension Lₙ / Kₙ of Kₙ, defined as an intermediate field
of Hₙ / Kₙ where Hₙ is the Hilbert class field (NumberField.HilbertClassField) of Kₙ.
Equations
- H.Ln n = IntermediateField.maximalAbelianPExtension (↥(H.Kn n)) (NumberField.HilbertClassField ↥(H.Kn n)) p
Instances For
instance
MvZpExtension.finiteDimensional_Ln
{p : ℕ}
[Fact (Nat.Prime p)]
{ι : Type u_1}
{K : Type u_2}
{Kinf : Type u_3}
[Finite ι]
[Field K]
[NumberField K]
[Field Kinf]
[Algebra K Kinf]
[IsGalois K Kinf]
(H : MvZpExtension p ι K Kinf)
(n : ℕ)
:
FiniteDimensional ↥(H.Kn n) ↥(H.Ln n)
instance
MvZpExtension.numberField_Ln
{p : ℕ}
[Fact (Nat.Prime p)]
{ι : Type u_1}
{K : Type u_2}
{Kinf : Type u_3}
[Finite ι]
[Field K]
[NumberField K]
[Field Kinf]
[Algebra K Kinf]
[IsGalois K Kinf]
(H : MvZpExtension p ι K Kinf)
(n : ℕ)
:
NumberField ↥(H.Ln n)
theorem
MvZpExtension.finrank_Ln
{p : ℕ}
[Fact (Nat.Prime p)]
{ι : Type u_1}
{K : Type u_2}
{Kinf : Type u_3}
[Finite ι]
[Field K]
[NumberField K]
[Field Kinf]
[Algebra K Kinf]
[IsGalois K Kinf]
(H : MvZpExtension p ι K Kinf)
(n : ℕ)
: