Documentation

Iwasawalib.NumberTheory.ZpExtension.Ln

Maximal unramified abelian p-extension Lₙ / Kₙ in a ℤₚ-extension tower K∞ / K #

noncomputable def MvZpExtension.Ln {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Finite ι] [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (n : ) :

The maximal unramified abelian p-extension Lₙ / Kₙ of Kₙ, defined as an intermediate field of Hₙ / Kₙ where Hₙ is the Hilbert class field (NumberField.HilbertClassField) of Kₙ.

Equations
Instances For
    instance MvZpExtension.isAbelianGalois_Ln {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Finite ι] [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (n : ) :
    IsAbelianGalois (H.Kn n) (H.Ln n)
    instance MvZpExtension.isUnramifiedEverywhere_Ln {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Finite ι] [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (n : ) :
    instance MvZpExtension.finiteDimensional_Ln {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Finite ι] [Field K] [NumberField K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (n : ) :
    FiniteDimensional (H.Kn n) (H.Ln n)
    instance MvZpExtension.numberField_Ln {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Finite ι] [Field K] [NumberField K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (n : ) :
    NumberField (H.Ln n)
    theorem MvZpExtension.finrank_Ln {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Finite ι] [Field K] [NumberField K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (n : ) :
    Module.finrank (H.Kn n) (H.Ln n) = p ^ multiplicity p (NumberField.classNumber (H.Kn n))
    instance MvZpExtension.isGalois_K_Ln {p : } [Fact (Nat.Prime p)] {ι : Type u_1} {K : Type u_2} {Kinf : Type u_3} [Finite ι] [Field K] [Field Kinf] [Algebra K Kinf] [IsGalois K Kinf] (H : MvZpExtension p ι K Kinf) (n : ) :
    IsGalois K (H.Ln n)